USE OF PHYTASE IN BROILER CHICKEN DIETS: A REVIEW

Martin Kliment, Mária Angelovičová, Szabolcs Nagy

ABSTRACT
The paper gives an overview of phytic acid in feed for broiler chickens, phytate sources in feedstuffs and also provides information about sources of the enzyme phytase. Phytate is present in cereals, legumes and oilseeds as a storage form of phosphorus, which contains approximately 14 – 28 % phosphorus. Phytases are phosphohydrolases, and they are the only known enzymes which can initiate the step-wise removal of phosphate from phytate. Phytases can be derived from a number of sources including plants, animals and microorganisms. Recent research has shown that microbial sources are more promising for the production of phytases on a commercial level and on cereal based feeds for broiler chickens. There are only 3 source organisms from which the most commonly encountered phytases in the animal feed industry emanate. They are Peniophora lycentii (6-phytase), Aspergillus niger (3-phytase) and Escherichia coli (6-phytase). Addition of phytase in broiler diets decreased phosphorus content in poultry litter by 23 – 30 %. Some studies reported that the microbial phytase increased weight gain and thus feed efficacy. According to other authors, addition of phytase reduces weight gain, feed intake, feed efficacy and percentage ash.

Key words: phytic acid, phytase, phytate, feed broiler

INTRODUCTION
Broiler diets have been mainly made from plant-based feed ingredients that, in addition to serving as dietary sources of starch (energy), protein, and fat, also contribute substantially to the total dietary phosphorus content. However, over 60% of the total phosphorus from conventional ingredients such as corn, wheat, and soybean meal (Plumstead et al., 2008).

The inclusion of feed enzymes in poultry diets to enhance nutrient utilization and performance by counteracting the negative influence of targeted substrates has become commonplace within the last two decades (Campbell and Bedford, 1992; Bedford and Schulze, 1998).

Cereals, legumes and oilseed crops are grown over 90% of the world’s harvested area. Together they serve as a major source of nutrients for the animal kingdom. An important constituent of these crops is phytic acid (myo-inositol hexakisphosphate) (Reddy et al., 1989).

The most commonly used term, phytate, refers to the mixed salt of phytic acid (myo-inositol hexaphosphate; IP6). The term, phytin, specifically refers to the deposited complex of IP6 with potassium, magnesium and calcium as it occurs in plants, whereas phytic acid is the free form of IP6 (Sella and Ravindran, 2007).

In cereals, phytate is located in the aleurone layer and the germ while the endosperm is almost free of phytate. Approximately 80% of phytate is located in the aleurone layer of small grains (wheat, rice, etc.), which represents 12% of this tissue's dry weight and demonstrates the enormous phytate reservoir which can be stored in special tissues (Raboy, 2003; O'Dell et al., 1972).
In legume seeds phytate predominantly occurs in the protein bodies of the endosperm or the cotyledon, containing up to 90% of the total phytic acid. In the whole seed the phytic acid content varies from 0.2 to 2.9% and is higher in the cotyledons (3.7%) (Harland, 2004; Ravindran et al., 1994; Harland and Prosky, 1979; Lestienne et al., 2005; Larbi and Mbarek, 1985; Lehrfeld, 1994; Porres et al., 2004).

In oilseeds such as sunflower kernels, soybeans, soybean products, inseed seeds and rape seeds the phytic acid content ranges from 11 to 5.4% (Wise, 1983; Harland et al., 2004; de Boland et al., 1975; Lestienne et al., 2005; Lolas et al., 1976; Graf and Dintzis, 1982; Ferrando, 1983; Ologhobo and Fetuga, 1984; AL-Wahsh et al., 2005; Lott et al., 2000).

Figure 1 myo-inositol-1, 2, 3, 4, 5, 6-hexakis phosphate at pH 6–7. Under physiological conditions the negative harges are counterbalanced most likely by sodium ions or by other cations. Conformation: 5 axial/1 equatorial (Emsey and Niazi, 1981)

There are numerous studies demonstrating the favourable effect of phytase on the phytate-P availability. In other words, phytase releases phosphorus from the phytate, making it available for monogastric animals thereby reducing environmental P-excretion. The use of microbial in the monogastric feed is an attractive option to supply more digestible phosphorus to livestock and to overcome the shortage in mineral phosphates without imposing an additional risk to the environment and the food chain (as an effective and sustainable approach) (Huyghebaert et al., 2009).

Phytic acid levels may be reduced by phytase [myo-inositol hexakis [(dihydrogen phosphate) phosphohydrolase, EC 3.1.3.8], an enzyme that catalyzes the sequential hydrolysis of phytate to phosphate and inositol via penta to monophosphates. This
decreases or eliminates the anti-nutritional effect and results in the bioavailability of divalent cationic essential dietary minerals (Palacios et al., 2008).

Phytases are meso-inositol hexaphosphate phosphohydrolases that catalyze the stepwise phosphate splitting of phytic acid (IP6) or phytate to lower inositol phosphate esters (IP5-IP1) and inorganic phosphate (Figure 2).

Figure 2 Phytate hydrolysis by phytase into inositol, phosphate, and other divalent elements. Phytate is myo-inositol-1,2,3,4,5,6-hexakis dihydrogen phosphate that contains approx. 14 to 28% phosphorus and 12–20% calcium. Phytate also chelates trace elements of iron and zinc (1 to 2%) between phosphate groups within a single phytate molecule or between two phytate molecules. Phytase is the only known enzyme that can initiate the phosphate hydrolysis at carbon 1, 3 or 6 in the inositol ring of phytate. The removal of phosphate group by phytase results in releasing of calcium, iron, zinc, and other metals (Lei and Porres, 2003).

Phytases can be derived from a number of sources including plants, animals and microorganisms. Recent research has shown that microbial sources are more promising for the production of phytases on a commercial level and on cereal based feeds. Microbial phytases are easily produced and extracted when synthesized extracellularly in a culture medium, and, in general, they may be synthesized by the same microbial starter used for feed processing. Natural or genetically modified strains of bacteria such as *Escherichia coli*, *Bacillus subtilis*, *Bacillus amyloliquefaciens* and *Klebsiella sp.*; yeasts such as *Schwanniomyces castellii*, *Schwanniomyces occidentalis*, *Hansenula polymorph* and *Rhodotorula gracilis*; and fungi such as *Aspergillus niger* and *Aspergillus ficuum* are some of the most important species used for the production of microbial phytases (Pandey et al., 2001).

Whilst there are a multitude of phytases described in the literature, there are only 3 sources organisms from which the most commonly encountered phytases in the animal feed industry emanate. They are *Peniophora lycii* (6-phytase), *Aspergillus niger* (3-phytase) or *Escherichia coli* (6-phytase). Despite the fact that all of these enzymes are capable of degrading phytic acid rapidly under ideal conditions, they differ significantly
in several properties relevant to their suitability and therefore efficacy for use in animal feed (Bedford and Cowieson, 2009).

Phytases are phosphomonoesterases, as are acid and alkaline phosphatases, but what sets them apart is their specific ability to hydrolyse myo-inositol hexakisphosphate (phytic acid) (Greiner and Farouk, 2007).

To improve bird utilization of phytate phosphorus and consequently reduce the phosphorus in poultry litter, Delaware has mandated since 2006 that all poultry feed be supplemented with phytase enzymes (DNMC, 2006). Studies showed that addition of phytase in broiler diet decreased phosphorus content in poultry litter by 23–30% (Hansen et al., 2005; Angel et al., 2006).

Leytem et al. (2008) reported that diets supplemented with phytase had greater phytate phosphorus hydrolysis than unsupplemented diets. Apparent total digestibility coefficients for phytate phosphorus and total phosphorus ranged from 0.10 to 0.73 and 0.43 to 0.61, respectively. The phosphorus composition of ileal digesta was predominantly phytate phosphorus (70 to 88% of total phosphorus), whereas excreta phytate phosphorus ranged from 26 to 76% of total phosphorus. Excreta WSP ranged from 3.2 to 7.5 g kg$^{-1}$ and was least for the barley diets. There was a 25% reduction in excreta WSP from the high phosphorus to the low phosphorus + phytase diets and a 37% reduction from the high phosphorus to the low phosphorus diets. As cereal grain had little influence on phytate digestibility, it is unlikely that intrinsic phytase in grain has much influence on phytate utilization by poultry. Both total phosphorus and WSP in excreta were reduced by the low phosphorus diet and the low phosphorus + phytase diet, irrespective of cereal grain, which reduces the risk of P transfer to water bodies when excreta are applied to land as fertilizer.

Onyango and Adeola (2008) reported that addition of phytase to the chemically defined casein diet reduced (P < 0.05) the V (max) of the duodenal brush border phytase, but the K (m) of the enzyme was not affected. Addition of phytate also reduced (P < 0.05) weight gain, feed intake, feed efficiency and percentage ash. Addition of microbial phytase fully restored the feed efficiency (P < 0.05), but V (max) and body weight gain were only partially restored (P < 0.05).

CONCLUSIONS

As phytase is increasingly used worldwide, science and technology related to the enzyme have evolved to a new exciting field at a fast pace. Clearly, supplemental phytases improve dietary phytate-phosphorus utilization by food-producing animals, and reduce environmental pollution of phosphorus from animal waste in areas of intensive animal production.

REFERENCES

Acknowledgment
This work was supported by Scientific Grant Agency under the contract No. VEGA 1/0509/08