Consumer behaviour of young generation in slovakia towards cocoa-enriched honey


  • Peter Šedí­k Slovak University of Agriculture in Nitra, Faculty of Economics and Management, Department of Marketing and Trade, Tr. A. Hlinku 2, 949 76 Nitra
  • Elena Horská Slovak University of Agriculture in Nitra, Faculty of Economics and Management, Department of Marketing and Trade, Tr. A. Hlinku 2, 949 76 Nitra
  • Eva Ivanišová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant products storage and processing, Tr. A. Hlinku 2, 949 76 Nitra
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, University of Rzeszow, Faculty of Biology and Agriculture, Department of Bioenergy Technology and F
  • Andrzej Krasnodębski University of Agriculture in Krakow, Faculty of Agriculture and Economics, Department of Economics and Corporate Finance, Al. Mickiewicza 21, 31-120 Kraków



honey, cocoa, product testing, questionnaire survey, Slovakia


The new trend of healthy lifestyle increases consumers´ attention towards superfoods or functional food. Due to this fact, honey enriched with various healthy foods such as cocoa, cinnamon, ginger or dried fruits has started to appear on the European market. The aim of this research paper was to investigate consumer´s perception and preferences for cocoa-enriched honey. Consumer research was based on questionnaire survey extended by product testing. This survey was conducted in 2018 (February and March) and in total 257 young Slovak consumers between 18 - 30 years participated. Each respondent tested and evaluated sensory attributes of the product (taste, aroma, colour and texture) using a 5-point scale. Statistical analyses included Friedman test, Mann-Whitney U test, Fisher's Exact Test, Pearson Chi-square test and Cramer'V coefficient. Results showed that the cocoa-enriched honey was evaluated as tasty, aromatic, gently, delicious, special, with ideal sweetness and amount of cocoa. All sensory attributes were evaluated positively (2 - good). Females were more interested in the purchase of this product. Moreover, the product would be purchased mostly by respondents who consider it a healthier alternative to commercial chocolate spreads or by those who consider their eating habits healthy. Laboratory tests revealed that the antioxidant activity of the product was higher in comparison to normal honey. In conclusion, the obtained information could be used in product positioning, promotion and designing appropriate marketing strategy.


Download data is not yet available.


Ali, F., Ranneh, Y., Ismail, A., Esa, N. M. 2015. Identification of phenolic compounds in polyphenols-rich extract of Malaysian cocoa powder using the HPLC-UV-ESI-MS/MS and prohibing antioxidant properties. Journal of Food Science and Technology, vol. 52, p. 2103-2111.

Al-Mamary, M., Al-Meeri, A., Al-Habori, M. 2002. Antioxidant activities and total phenolics of different types of honey. Nutrition Research, vol. 22, no. 9, p. 1041-1047.

Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., Lamuela-Raventos, R. M. 2008. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. Journal of Agricultural and Food Chemistry, vol. 58, p. 3111-3117.

Araujo, Q. R. D., Gattward, J. N., Almoosawi, S., Parada Costa Silva, M. G. C., Dantas, P. A. D. S., Araujo Júnior, Q. R. D. 2013. Cocoa and Human Health: From Head to Foot-A Review. Critical Reviews in Food Science and Nutrition, vol. 56, no. 1, p. 1-12.

Ayoub, H., Zein, S., Makawi, A., Gadkariem, E., Mohamed, S. 2009. Determination of antioxidant flavonoids in Sudanese honey samples by solid phase extraction and high performance liquid chromatography. European Journal of Chemistry, vol. 6, p . 429-437.

Bauer, D., Pimentel de Abreu, J., Oliviera, H. S. S., Goes-Neto, A., Koblitz, M. G. B., Teodoro, A. J. 2016. Antioxidant activity and cytotoxicity effect of cocoa beans subjected to different processing conditions in human lung carcinoma cells. Oxidative Medicine and Cellular Longevity, vol. 2016. p. 1-11.

Bittsánszky, A., Tóth, A. J., Illés, Cs. B., Dunay, A. 2015. Knowledge and Practice in Food Safety Processes: A Case Study on Hungarian School Catering. International Journal of Innovation and Learning, vol. 18, no. 3, p. 380-396.

Ćetković, G., Čanadanović-Brunet, J., Vulić, J., Djilas, S., Tumbas Šaponjac, V. 2014. Antioxidant and Sensorial Properties of Linden Honey with Dried Apricots. Chemistry & Biodiversity, vol. 11, no. 11, p. 1861-1870.

Farmakopea Polska, 1999. The Polish Farmaceutical Society [online] s.a. [cit.2018-11-25] Available at:

Gašic, U., Keckes, S., Dabic, D., Trifkovic, J., Milojkovic-Opsenica, D., Natic, M., Tešic, Z. 2014. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chemistry, vol. 145, p. 599-607.

Godočiková, L., Ivanišová, E., Árvay, J., Petrová, J., Kačániová, M. 2016. The comparison of biological activity of chocolates made by different technological procedures. Potravinarstvo, vol. 10, no. 1, p. 316-322.

Guziy, S., Šedík, P., Horská, E. 2017. Comparative study of honey consumption in Slovakia and Russia. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 472-479.

Hazuchová, N., Nagyová, Ľ., Stávková, J., Chytil, O., Košičiarová, I. 2018. Attention analysis of honey jar labels using eye-tracking techniques. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 815-823.

Jaafar, K., Haidar, J., Kuraydiyyah, S., Ghaddar, T., Knio, K., Ismail, B., Toufeili, I. 2017. Physicochemical, melissopalynological and antioxidant properties of artisanal honeys from Lebanon. Journal of Food Science and Technology, vol. 54, no. 8, p. 2296-2305.

Kačániová, M., Horská, E., Haščík, P., Felšöciová, S., 2015. Use of antimicrobial properties of bee products against selected species of microorganisms (Využitie antimikrobiálnych vlastností včelích produktov proti vybraným druhom mikroorganizmov). 1st ed. Nitra, Slovakia : Slovak University of Agriculture in Nitra. 116 p. ISBN 978-80-552-1365-1. (In Slovak)

Kowalski, S., Makarewicz, M. 2017. Functional properties of honey supplemented with bee bread and propolis. Natural Product Research, vol. 31, no. 22, p. 2680-2683,

Kozelová, D., Matejková, E., Fikselová, M., Dékányová, J. 2014. Analysis of consumer behavior at chocolate purchase. Potravinarstvo, vol. 8, no. 1, p. 62-66,

Lapčík, L., Lapčíková, B., Žižková, H., Peng, L., Vojteková, V. 2017. Effect of cocoa fat content on wetting and surface energy of chocolate. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, 2017, p. 410-416.

Lusby, P. E., Coombes, A. L., Wilkinson, J. M. 2005. Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Research, vol. 36, no. 5, p. 464-467.

Özkök, A., D´arcy, B., Sorkun, K. 2010. Total phenolic acid and total flavonoid content of Turkish pine honeydew honey. Journal of ApiProduct and ApiMedical Science, vol. 2, p. 65-71.

Pyrzynska, K.; Biesaga, M. 2009. Analysis of phenolic acids and flavonoids in honey. Trends in Analytical Chemistry, vol. 28, no. 79, p. 893-902.

Sánchés-Moreno, C., Larrauri, A., Saura-Calixto, F. 1998. A procedure to measure the antioxidant afficiency of polyphenols. Journal of Science and Food Agriculture, vol. 76, no. 2, p. 270-276.<270::AID-JSFA945>3.0.CO;2-9

Singleton, V. L., Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Agricultural, vol. 16, p. 144-158.

Šedík, P., Kňazovická, V., Horská, E., Kačániová, M. 2018a. Consumer sensory evaluation of honey across age cohorts in Slovakia. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 673-679

Šedík, P., Zagula, G., Ivanišová, E., Kňazovická, V., Horská, E., Kačániová, M. 2018b. Nutrition marketing of honey: chemical, microbiological, antioxidant and antimicrobial profile. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 767-774.

Todorovic, V., Milenkovic, M., Vidovic, B., Todorovic, Z., Sobajic, S. 2017. Correlation between Antimicrobial, Antioxidant Activity, and Polyphenols of Alkalized/Nonalkalized Cocoa Powders. Journal of Food Science, vol. 82, no. 4, p. 1020-1027.

Tumbas, V. T., Vulic, J. J., Canadanovic-Brunet, J. M., Ðilas, S. M., Cetkovic, G. S., Stajcic, S., 2012. Antioxidant and sensorial properties of acacia honey supplemented with prunes. Acta Periodica Technologica, vol. 43, p. 293-304.

Vulić, J., Canadanovic-Brunet, J., Cetkovic, G., Djilas, S., Tumbas Šaponjac, V., Stajcic, S. 2015. Polyfloral, linden and acacia honeys with dried cherries after three months of storage - Antioxidant and sensory evaluation. Acta Periodica Technologica, vol. 46. p. 103-114.

Wen, Y.Q., Zhang, J., Li, Y., Chen, L., Zhao, W., Zhou, J., Jin, Y. 2017. Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules, vol. 22, no. 5, p. 2-13.

Weston, R. J. 2000. The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chemistry, vol. 71, no. 2, p. 235-239.

Wilczyńska, A., Newerli-Guz, J., Szweda, P. 2017. Influence of the Addition of Selected Spices on Sensory Quality and Biological Activity of Honey. Journal of Food Quality, p. 1-7.

Willett, W. C. 2002. Balancing life-style and genomic research for disease prevention. Science, vol. 292, p. 695-698.



How to Cite

Šedí­k, P. ., Horská, E. ., Ivanišová, E. ., Kačániová, M. ., & Krasnodębski, A. . (2019). Consumer behaviour of young generation in slovakia towards cocoa-enriched honey. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 18–24.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >> 

Similar Articles

You may also start an advanced similarity search for this article.