Expression pattern of thaumatin in the selected red varieties of Vitis vinifera, L.


  • Jana Žiarovská Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Veronika Fialková Slovak University of Agriculture, Research centre AgroBioTech, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Lucia Zamiešková Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Jana Bilčí­ková Slovak University of Agriculture, Research centre AgroBioTech, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Lucia Zeleňáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia



thaumatin, expression, red varieties, Vitis vinifera L.


Vitis vinifera L. is a specie that is adapted to a very variable range of climates, from cold up to the desert one, but especially it grows in the temperate Mediterranean regions and continental areas of Europe. Grape is a widespread consumed fruit as well as processed to musts, juices or wine. The health beneficial effects of grapes and wine are very well known due to their high nutritional value and unique phytochemical composition. Despite many health protective and beneficial effects of Vitis vinifera, a part of population suffer to allergic reactions to this fruit. Allergens of wine and grapes are: endochitinases, lipid-transfer protein and thaumatin. Thaumatin is a protein having a sweet taste belonging to the PR5-like proteins.  These proteins are very difersified in their functions and were described to be involved in stress responses and fruit ripening, but are expressed in healthy grape fruits in a constitutive manner and needn´t to be expressed only as a answer to the stress. Thaumatin is a minor allergen in grape, but belonging to the suspected panallergens relevant to the food cross-allergy induction, its importance is quite high. Another importance of this protein is a technological one, as reported to aggregate in wine to form a visible haze unless removed prior to bottling. In this study, expression of thaumatin-like allergen was analysed in the grapes of selected varieties. Grapes of four red varieties of Vitis vinifera, L. were obtained in the season 2017 in the Sabo winery  that belongs to the Malokarpatská wine region. Fresh maturated grapes of varieties Alibernet, Cabernet Sauvignon , Frankovka modrá and Dornfelder were analysed. Expression changes of thaumatin was calculated by delta delta Ct method.  Dornfelder was found as to have the lowest activity in thaumatin-like gene activity,  mainly when comparing to the Cabernet Sauvignon and Frankovka modrá. Alibernet, on the other side, has the expression level of thaumatin very similar when comparing to the Cabernet Sauvignon and Frankovka modrá.


Download data is not yet available.


Ahmad, F., Khan, G. M. 2012. Study of aging and hepatoprotective activity of Vitis Vinifera L. seeds in albino rats. Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 3, p. 1770-1774.

Andrade, S., Ramalho, M. J., Pereira, M. C., Loureiro, J. A. 2018. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol, vol. 9, 1261 p.

Arora, P., Ansari, S. H., Najmi, A. K., Anjum, V., Ahmad, S. 2016. Investigation of anthi-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy, Asthma and Clinical Immunology, vol. 12, 42 p.

Barthomeuf, C., Lamy, S., Blanchette, M., Boivin, D., Gingras, D., Beliveau, R. 2006. Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemothaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radical Biology and Medicine, vol. 40, no. 4, p. 581-590.

Bircher, A. J., Bigliardi, P., Yilmaz, B. 1999. Anaphylaxis resulting from selective sensitization to Americana grapes. Journal of Allergy and Clinical Immunology, vol. 4, no. 5, p. 1111-1113.

Breiteneder, H. 2004 Thaumatin-like proteins – a new family of pollen and fruit allergens. Allergy, vol. 59, no. 5, p. 479-481.

Brito, F. F., Gimeno, P. M., Bartolome, B., Alonso, A. M., Lara, P., Fernandez, J. A., Martinez, A. 2008. Vine pollen allergy in areas with a high density of vineyards. Annals of Allergy, Asthma and Immunology, vol. 100, no. 6, p. 596-600.

Cianferoni, A., Spergel, J. M. 2009. Food Allergy: Review, Classification and Diagnosis. Allergology International, vol. 58, no. 4, p. 457-466.

Cui, J., Juhasz, B., Tosaki, A., Maulik, N., Das, D. K. 2002. Cardioprotection with grapes. Journal of Cardiovascular Pharmacology, vol. 40, no. 5, p. 762-769.

Ferreira, R. B., Piçarra-Pereira, M. A., Monteiro, S., Loureiro, V. B., Teixeira, A. R. 2001. The wine proteins. Trends Food Sci Technol, vol. 12, no. 7, p. 230-239.

Giannoccaro, F., Munno, G., Riva G., Pugliese, S., Paradiso, M. T., Ferrannini, A. 1998. Oral allergy syndrome to grapes. Allergy, vol. 53, no. 4, p. 451-452.

Charron, C., Giegé, R., Lorber, B. 2003 Structure of thaumatin in a hexagonal space group: comparison of packing contacts in four crystal lattices. Acta Crystallogr Sect D Biol Crystallogr, vol. 60, p. 83-89.

Kalogeromitros, D. C., Makris, M. P., Gregoriou, S. G., Katoulis, A. C., Straurianeas, N. G. 2006. Sensitization to other foods in subjects with reported allergy to grapes. Allergy and Asthma Proceedings, vol. 27, no. 1, p. 68-71.

Livak, K. J., Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, vol. 25, no. 4, p. 402-408.

Marangon, M., Van Sluyter, S. C., Waters, E. J., Menz, R. I. 2014. Structure of Haze Forming Proteins in White Wines: Vitis vinifera Thaumatin-Like Proteins. PLOS,

Masani, Y. A., Mathew, N., Chakraborty, M., Kamath, J. V. 2012. Effects of Vitis vinifera against Trition-X-100 induced hyperlipidaemia in rats. Inter Res J Pharm, vol. 3, no. 12, p.101-103.

Palacín, A., Tordesillas, L., Gamboa, P., Sánchez-Monge, R., Cuesta-Herranz, J., Sanz, M. L., Barber, D., Salcedo, G., Díaz-Perales, A. 2010 Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clinical and Experimental Allergy, vol. 40, no. 9, p. 1422-1430.

Pastorello, E. A., Farioli, L., Pravettoni, V., Ortolani, C., Fortunato, D., Giuffrida, M. G., Perono Garoffo, L., Calamari, A. M., Brenna, O., Conti, A. 2003. Identification of grape and wine allergenes as an endochitinase 4, a lipid-transfer protein, and a thaumatin. Journal of Allergy and Clinical Immunology, vol. 111, no. 2, p. 350-359.

Senna, G., Mistrello, G., Roncarolo, D., Crivellaro, M., Bonadonna, P., Schiappoli, M., Passalacgua, G. 2001. Exercise-induced anaphylaxis to grape. Allergy, vol. 56, no. 12, p. 1235-1236.

Smyth, G. K. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, p. 1-25.

Social Science Statistics. 2019. T-Test Calculator for 2 Independent Means. Available at:

Varoni, E. M., Lo Faro, A. F., Sharifi-Rad, J., Iriti, M. 2016. Anticancer Molecular Mechanisms of Resveratrol. Front Nutr, vol. 3, p. 1-15.

Vassilopoulou, E., Zuidmeer, L., Akkerdaas, J., Tassios, I., Rigby, N. R., Mills, E. N., van Ree, R., Saxoni-Papageorgiou, P., Papadopoulos, N. G. 2007. Severe immediate allergic reactions to grapes: part of a lipid transfer protein-associated clinical syndrome. International Archives of Allergy and Immunology, vol. 143, no. 2, p. 92-102.

Wang, Q., Li. F., Zhang, X., Zhang, Y., Hou, Y., Zhang, S., Wu, Z. 2011. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity. In PLoS One, vol. 22, no. 6, e16930.

Waters, E. J., Wallace, W., Williams, P. J. 1991. Haat haze characteristics of fractionated wine proteins. Am J Enol Vitic vol. 42, p. 123-127.

Yan,X., Qiao, H., Zhang, H., Guo, Ch., Wang, M., Wang, Y., Wang, X. 2017. Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Scientific Reports, vol. 7, no. 4269.

Žiarovská, J., Zeleňáková, L., Fernandéz, E. C., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232.



How to Cite

Žiarovská, J. ., Fialková, V. ., Zamiešková, L. ., Bilčí­ková, J. ., Zeleňáková, L., & Kačániová, M. (2019). Expression pattern of thaumatin in the selected red varieties of Vitis vinifera, L. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 547–552.

Most read articles by the same author(s)

1 2 > >>