Genetic diversity in Tunisian castor genotypes (Ricinus communis L.) detected using RAPD markers

Authors

  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4269 https://orcid.org/0000-0001-6265-1616
  • Ezzeddine Saadaoui University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests (INRGREF), Regional Station of Gabí¨s, BP 67, Gabí¨s Manara, 6011, Tunisia, +421 37 641 4269 https://orcid.org/0000-0001-5991-0912
  • Želmí­ra Balážová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4327
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4596
  • Lenka Petrovičová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4697

DOI:

https://doi.org/10.5219/1116

Keywords:

castor; DNA; dendrogram; PCR; PIC

Abstract

Castor (Ricinus communis L.) is a plant that is commercially very important to the world. It is produced in about
30 countries lying in the tropical belt of the world. It is an important plant for production of industrial oil. Assessment of genetic diversity of a crop species is a prerequisite to its improvement; hence it is important to identify the genetic diversity of castor genetic resources for development of improved cultivars. The present study is focused on estimation of genetic distance between 56 Tunisian castor genotypes, based on 18 RAPD markers. Seeds of castor were obtained from the University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests (INRGREF), Regional Station of Gabí¨s, Tunisia. The ricin genotypes were obtained from 12 regions of Tunisia. The efficacy of the RAPD technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using 18 primers for RAPD analysis produced 145 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (OPE-07) to 13 (SIGMA-D-01), and the amplicon size ranged from 100 to 1500 bp. Of the 145 amplified bands, 145 were polymorphic, with an average of 8.11 polymorphic bands per primer. The lowest values of polymorphic information content were recorded for RLZ 9 (0.618) and the the highest PIC values were detected for OPD-08 (0.846) with an average of 0.761. A dendrogram was constructed from a genetic distance matrix based on profiles of the 18 RAPD primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Genetically the closest were four genotypes from cluster 1 (BT-1 - S-5 and K-1 - N-3). Knowledge of the genetic diversity of castor can be used in future breeding programs for increased oil production to meet the ever increasing demand of castor oil for industrial uses as well as for biodiesel production.

Downloads

Download data is not yet available.

References

Allan, G., Williams, A., Rabinowicz, P. D., Chan, A. .P., Ravel, J., Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genetetic Resources Crop Evolution, vol. 55, no. 3, p. 365-378. https://doi.org/10.1007/s10722-007-9244-3

Ansari, S., Solouki, M., Fakheri, B., Fazeli-Nasab, B., Mahdinezhad, N. 2018. Assesment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian clover (Trifolium Resupinatum L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 657-666. https://doi.org/10.5219/960

Balážová, Ž., Vivodík, M., Gálová, Z. 2016. Assessment of RAPD polymorphism in ricin genotypes. Journal of Microbiology, Biotechnology and Food Sciences, vol. 5, no. 4, p. 386-388. https://doi.org/10.15414/jmbfs.2016.5.4.386-388

Balážová, Ž., Gálová, Z., Vivodík, M., Chňapek, M., Hornyák Gregáňová, R. 2018. Molecular analysis of buckwheat using gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 546-552. https://doi.org/10.5219/954

Bošeľová, D., Žiarovská, J. 2016. Direct PCR as the platform of Hedera helix, L. genotypying without the extraction of DNA. Journal of Central European Agriculture, vol. 17, no. 4, p. 941-949. https://doi.org/10.5513/JCEA01/17.4.1795

Dhingani, R. M., Tomar, R. S., Parakhia, M. V., Patel, S. V., Golakiya, B. A. 2012. Analysis of genetic diversity among different Ricinus communis genotypes for macrophomina root rot through RAPD and microsatellite markers. International Journal of Plant Protection, vol. 5, no. 1, p. 1-7.

Dong, H., Wang, C., Li, W., Yang, G. X., Yang, H., Wang, Y. R., Chen, M. H., Li, F. J., Feng, Y., Chen, G. 2012. Castor germplasm diversity analysis using AP-PCR and RMAPD. Academic Periodical of Farm Products Processing, vol. 2012, p. 23- 36.

El-Fiki, A., Adly, M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 100-108. https://doi.org/10.5219/978

FAOSTAT. 2014. Available at: http://www.fao.org/faostat/en/

Foster J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biology, vol. 10, p. 13-18. https://doi.org/10.1186/1471-2229-10-13

Gajeraa, B. B., Kumara, N., Singha, A. S., Punvara, B. S., Ravikirana, R., Subhasha, N., Jadejab, G. C. 2010. Assessment of genetic diversity in castor (Ricinus communis L.) using RAPD and ISSR markers. Industrial Crops and Products, vol. 32, no. 3, p. 491-498. https://doi.org/10.1016/j.indcrop.2010.06.021

Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516

He, S., Xu, W., Li, F., Wang, Y., Liu, A. 2017. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Diversity, vol. 39, no. 5, p. 300-307. https://doi.org/10.1016/j.pld.2017.05.007

Kallamadi, P. R., Ganga Rao Nadigatlab, V. P. R., Mulpuriba, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061

Kanti, M., Anjani, K., Usha Kiran, B., Vivekananda, K. 2015. Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech Journal of Genetics and Plant Breeding, vol. 51, p. 96-109. https://doi.org/10.17221/205/2014-CJGPB

Kole, Ch., Rabinowicz, P. 2018. The castor bean genome. Switzerland: Springer Nature, 272 p. ISBN 978-3-319-97279-4. https://doi.org/10.1007/978-3-319-97280-0

Lakhani, H. N., Patel, S. V., Bodar, N. P., Golakiya, B. A. 2015. RAPD analysis of genetic diversity of castor bean (Ricinus communis L.). International Journal of Current Microbioly and Applied Sciences, vol. 4, no. 1, p. 696-703.

Lu, Z., Qi, J. M., Fang, P. P., Su, J. G., Xu, J. T., Tao, A. F. 2010. Genetic diversity and phylogenetic relationship of castor germplasm as revealed by SRAP analysis. Plant Science Journal, vol. 28, no. 1, p. 1-6. https://doi.org/10.3724/SP.J.1142.2010.00001

Machado, E. L., Alves Silva, S., de Sousa Santos, A., Andrade Bastos, L., Nogueira Pestana, C., Souza dos Santos, K., Fortes Ferreira, C., Alves Silva Diamantino, M. S. 2013. Genetic dissimilarity between castor bean cultivars using RAPD markers. Pesquisa Agropecuária Brasileira, vol. 48, no. 3, p. 342-345. https://doi.org/10.1590/S0100-204X2013000300014

Masojć, P., Myśków, B., Milczarski, P. 2001. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theoretical Applied Genetics, vol. 102, no. 8, p. 1273-1279. https://doi.org/10.1007/s001220000512

Quintero, V., Anaya-López, J. L., Núñez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Industrial Crops and Products, vol. 41, p. 134-143. https://doi.org/10.1016/j.indcrop.2012.04.033

Ražná, K., Bežo, M., Hlavačková, L., Žiarovská, J., Miko, M., Gažo, J., Habán, M. 2016. MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo, vol. 10, no. 1, p. 188-194. https://doi.org/10.5219/583

Reddy, K. P., Nadigatla, V. P. R. G. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061

Rukhsar Patel, M. P., Parmar, D. J., Kalola, A. D., Kumar, S. 2017. Morphological and molecular diversity patterns in castor germplasm accessions. Industrial Crops and Products, vol. 97, p. 316-323. https://doi.org/10.1016/j.indcrop.2016.12.036

Simões, K. S., Silva, S. A., Machado, E. L. and Brasileiro, H. S. 2017a. Development of TRAP primers for Ricinus communis L. Genetics and Molecular Research, vol. 16, no. 2, p. 100-113. https://doi.org/10.4238/gmr16029647

Simões, K. S., Silva, S. A., Machado, E. L. and Silva, M. S. 2017b. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, vol. 16, no. 3, p. 100-112. https://doi.org/10.4238/gmr16039776

Tomar Rukam, S., Parakhia, M. V., Kavani, R. H., Dobariya, K. L., Thakkar, J. R., Rathod, V. M., Dhingani, R. M., Golakiya, B. A. 2014. Characterization of castor (Ricinus communis L.) genotypes using different markers. Research Journal of Biotechnology, vol. 9, no. 2, p. 6-13.

Vasconcelos, S., Onofre, A. V. C., Milani, M., Benko-Iseppon, A. M., Brasileiro-Vidal, A. C. 2016. Accessing genetic diversity levels of Brazilian genotypes of castor with AFLP and ISSR markers. Pesquisa Agropecuária Pernambucana, vol. 21, no. 1, p. 24-31. https://doi.org/10.12661/pap.2016.005

Vivodík, M., Balážová, Ž., Gálová, Z., Kuťka Hlozáková, T. 2015a. Differentiation of ricin using RAPD markers. Pakistan Journal of Botany, vol. 47, no. 4, p. 1341-1345.

Vivodík, M., Balážová, Ž., Gálová, Z., Kuťka Hlozáková, T. 2015b. Evaluation of molecular diversity of new castor lines (Ricinus communis L.) using random amplifi ed polymorphic DNA markers. Horticultural Biotechnology Research, vol. 1, p. 1-4.

Vivodík, M., Balážová, Ž., Gálová, Z., Chňapek, M., Petrovičová, L. 2015c. Study of DNA polymorphism of the castor new lines based on RAPD markers. Journal of Microbiology, Biotechnology and Food Sciences, vol. 4 (special issue 2), p. 125-127. https://doi.org/10.15414/jmbfs.2015.4.special2.125-127

Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinárstvo, vol. 9, no. 1, p. 393-397. https://doi.org/10.5219/509

Wang, Ch., Li, G., Zhang, Z., Peng, M., Shang, Y., Luo, R., Chen, Y. 2013. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochemical Systematics and Ecology, vol. 51, p. 301-307. https://doi.org/10.1016/j.bse.2013.09.017

Wang, M. L., Dzievit, M., Chen, Z., Morris, J. B., Norris, J. E., Barkley, N. A., Tonnis, B., Pederson, G. A., Yu, J. 2017. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome, vol. 60, no. 3, p. 193-200. https://doi.org/10.1139/gen-2016-0116

Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, vol. 18, no. 22, p. 6531-6535. https://doi.org/10.1093/nar/18.22.6531

Žiarovská, J., Grygorieva, O., Zeleňáková, L., Bežo, M., Brindza, J. 2015. Identification of sweet chesnut pollen in bee pollen pellet using molecular analysis. Potravinarstvo, vol. 9, no. 1, p. 352-358. https://doi.org/10.5219/497

Žiarovská, J., Kyseľ, M., Cimermanová, R., Knoteková, L. 2017. Effect of DNA extraction method in the Rosa Canina L. identification under different processing temperature. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 190-196. https://doi.org/10.5219/717

Žiarovská, J., Zeleňáková, L., Fernández Cusimamani, E., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis Vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232. https://doi.org/10.5219/892

Published

2019-05-28

How to Cite

Vivodí­k, M., Saadaoui, E. ., Balážová, Želmí­ra, Gálová, Z., & Petrovičová, L. (2019). Genetic diversity in Tunisian castor genotypes (Ricinus communis L.) detected using RAPD markers. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 294–300. https://doi.org/10.5219/1116

Most read articles by the same author(s)

1 2 > >>