Comparative study of some bioactive compounds and their antioxidant activity of some berry types


  • Amina Aly Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298
  • Rabab Maraei Natural Products Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. 29, Nasr City, Cairo- Egypt, Tel.: + 202-22749298
  • Omneya Abou El-Leel Agriculture Research Center, Giza- Egypt



berries, bioactive compounds, phenolic compounds, antioxidant activity


Berries are wealthy in bioactive compounds like phenolic compounds and flavonoids that are deemed antioxidants and are great important to health. This research was performed to examine, recognize and compare bioactive compounds in certain types of berries and their antioxidant activity. The data show that blue berry, black berry and Egyptian black mulberry contain the highest content of most bioactive compounds such as phenolic compounds, flavonoids and tannins, while long mulberry and red currant berry have the lowest content for most of these compounds. They therefore, contain the highest value of antioxidant activity. The chemical composition of the berries varies depending on cultivar, variety, location of growth, environmental conditions and harvest time, as well as post-harvest treatments therefore the composition differed from berry fruit to another. Thus, berry fruits are very useful in nutrition to protect the body from many diseases because of its containment of these compounds, which act as free radicals scavenger that harm the body and thus rid the body of many harmful toxins.


Download data is not yet available.


Alam, M. K., Rana, Z. H., Islam, S. N., Akhtaruzzaman, M. 2019. Total phenolic content and antioxidant activity of methanolic extract of selected wild leafy vegetables grown in Bangladesh: A cheapest source of antioxidants. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 287-293.

Aly, A. A., Ali, H. G. M., Eliwa, N. E. R. 2019. Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. J. Food Measurement and Characterization, vol. 13, no. 2, p. 911-920.

Andreasen, M., Landbo, A. K., Christensen, L., Hansen, A., Meyer, A. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J. Agricultural and Food Chemistry, vol. 49, no. 8, p. 4090-4096.

Anttonen, M. J., Karjalainen, R. O. 2005. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Comp. Anal., vol. 18, p. 759-769.

Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., vol. 99, no. 1, p. 191-203.

Beekwilder, J., Hall, R. D., Ric de Vos, C. H. 2005. Identification and dietary relevance of antioxidants from raspberry. Biofactors, vol. 23, p. 197-205.

Bhat, S. V., Nagasampagi, B. A., Sivakumar, M. 2005. Chemistry of natural products. ChemBioChem, vol. 6 no. 6, p. 1127-1128.

Bobinaitė, R., Viškelis, P., Venskutonis, P. R. 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, vol. 132, no. 3, p. 1495-1501.

Brindza, J., Grygorieva, O., Klymenko, S., Vergun, O., Mareček, J., Ivanišová, E. 2019. Variation of fruits morphometric parameters and bioactive compounds of Asimina triloba (L.) dunal germplasm collection. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 1-7.

Buege, J. A., Aust, S. D. 1978. Microsomal lipid peroxidation. Methods in Enzymol., vol. 52, p. 302–310.

Burdulis, D., Sarkinas, A., Jasutiene, I., Stackeviciene, E., Nikolajevas, L., Janulis, V. 2009. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) Fruits. Acta Poloniae Pharmaceutica, vol. 66, no. 4, p. 399-408.

Deighton, N., Brennan, R., Finn, C., Davies, H. V. 2000. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric., vol. 80, p. 1307-1313.<1307::AID-JSFA638>3.0.CO;2-P

Diaconeasa, Z., Ranga, F., Rugina, D., Leopold, L., Pop, O., Vodnar, D., Cuibus, L., Socaciu, C. 2015. Pheolic content and their antioxidant activity in various berries cultivated in Romania. Bulletin UASVM Food Science and Technology, vol. 72, no. 1, p. 99-103.

Duncan, D. B. 1955. Multiple range and multiple ’F’ tests. Biometrics, vol. 11, no. 1, p. 1-42.

Engels, C., Schieber, A., Ganzle, M. G. 2012. Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. Eur. Food. Res. Technol., vol. 234, no. 3, p. 535-542.

Giovanelli, G., Buratti, S. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem., vol. 112, no. 4, p. 903-908.

Govindaraghavan, S. 2014. Pharmacopeial HPLC identification methods are not sufficient to detect adulterations in commercial bilberry (Vaccinium myrtillus) extracts. Anthocyanin profile provides additional clues. Fitoterapia, vol. 99, p. 124-138.

Gulluce, M., Sokmen, M., Sahin, F., Sokmen, A., Adiguzel, A., Ozer, H. 2004. Biological activi¬ties of the essential oil and methanolic extract of Mi¬cromeria fruticosa (L) Druce ssp serpy llifolia (Bieb) PH davis plants from the Eastern Anatolia region of Turkey. J. Sci. Food Agric., vol. 84, no. 7, p. 735-741.

Huang, W., Zhang, H., Liu, W., Li, C. 2012. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B, vol. 13, no. 2, p. 94-102. 10.1631/jzus.B1100137

Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S. J., Gescher, A. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev., vol. 9, no. 11, p. 1163-1170.

Chen, A. Y., Chen, Y. C. 2013. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., vol. 138, no. 4, 2099-2107.

Chew, Y. L., Goh, J. K., Lim, Y. Y. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem., vol. 116, no. 1, p. 13-18.

Lachowicz, S., Kolniak-Ostek, J., Oszmianski, J., Wisniewski, R. 2017. Comparison of phenolic content and antioxidant capacity of bear garlic (Allium ursinum L.) in different maturity stages. J. Food Processing and Preservation, vol. 41, no. 1, p. 1-10.

Lim, S. Y., Meyer, M., Kjonaas, R. A., Ghosh, S. K. (2006). Phytol-based novel adjuvants in vaccine formulation: 1. assessment of safety and efficacy during stimulation of humoral and cell-mediated immune responses. J. Immune Based Ther. Vaccines, vol. 4, p. 6-8.

Maher, P. 2015. Fisetin Acts on Multiple Pathways to Reduce the Impact of Age and Disease on CNS Function. Front Biosci., vol. 7, p. 58-82.

Marinova, D., Ribarova, F., Atanassova, M. 2005. Total phenolic and total flavonoids in Bul¬garian fruits and vegetables. J.. Uni. Chem. Technol. Metal., vol. 40, no. 3, p. 255-260.

Nile, S. H., Park, S. W. 2014. Edible berries: Bioactive components and their effect on human health. Nutrition, vol. 30, no. 2, p. 134-144.

Oszmianski, J., Lachowicz, S. 2016. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, vol. 21, p. 1-14.

Oyaizu, M. 1986. Studies on products of brown¬ing reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nut., vol. 44, p. 307-315.

Price, M. L., Van Scoyoc, S., Butler, L. G. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem., vol. 26, no. 5, p. 1214-1218.

Ryu, K. R., Choi, J. Y., Chung, S., Kim, D. H. 2011. Anti-scratching behavioral effect of the essential oil and phytol isolated from Artemisia princeps Pamp in mice. Planta Med., vol. 77, no. 1, p. 22-26.

Santos, C. C., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A., de Oliveira, G. A., Costa, J. P., de Sousa, D. P., de Freitas, R. M., de Almeida, R. N. 2013. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience J., vol. 2013, p. 1-9.

Sellappan, S., Akoh, C. C., Krewer, G. 2002. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem., vol. 50, no 8, p. 2432-2438.

Shahidi, F., Naczk, M. 1995. Methods of anal¬ysis and quantification of phenolic compounds. Food phenolic: sources, chemistry, effects and applications. Lan¬caster, England : Technomic Publishind Company, Inc, 287 p.

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. 2015. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., vol. 16, no. 10, p. 24673-24706.

Starast, M., Karp, K., Vool, E., Moor, U., Tonutare, T., Paal, T. 2007. Chemical composition and quality of cultivated and natural blueberry fruit in Estonia. Vegetable Crops Research Bulletin, vol. 66, no. 1, p. 143-153.

Sung, B., Chung, H. Y., Kim, N. D. 2016. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., vol. 21, no. 4, p. 216-226.

van Breda, S. G. J., Briedé, J. J., de Kok, T. M. C. M. 2019. Improved preventive effects of combined bioactive compounds present in different blueberry varieties as compared to single phytochemicals. Nutrients, vol. 11, no. 1, p. 1-14.

Vuong, Q. V., Pham, H. N. T., Vu, H. T., Dang, T. T., Ngo, T. V., Chalmers, A. C. 2018. Fruit characteristics, phytochemical and antioxidant properties of blueberry ash (Elaeocarpus reticulatus). Heliyon, vol. 4, no. 10, p. 1-16.

Wu, Y. Y., Li, W., Xu, Y., Jin, E. H., Tu, Y. Y. 2011. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses. J. Zhejiang Univ. Sci. B, vol. 12, no. 9, p. 744-751.

Yamagishi, S., Matsui, T. 2011. Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol. Res., vol. 64, no. 3, p. 187-194.

Yermakov, A. I., Arasimov, V. V., Yarosh, N. P. 1987. Methods of biochemical analysis of plants. Leningrad, Russia : Agropromizdat, p. 122-142 (in Russian).

Yun, K. J., Koh, D. J., Kim, S. H., Park, S. J., Ryu, J. H., Kim, D. G., Lee, J. Y., Lee, K. T. 2008. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J. Agric Food Chem., vol. 56, no. 21, p. 10265-10272.

Zadernowski, R., Naczk, M., Nesterowicz, J. 2005. Phenolic acid profiles in some small berries. J. Agric. Food Chem., vol. 53, no. 6, p. 2118-2124.

Zou, Y., Kim, A. R., Kim, J. E., Choi, J. S., Chung, H. Y. 2002. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric Food Chem., vol. 50, no. 21, p. 5884-5890.



How to Cite

Aly, A., Maraei, R., & Abou El-Leel, O. (2019). Comparative study of some bioactive compounds and their antioxidant activity of some berry types . Potravinarstvo Slovak Journal of Food Sciences, 13(1), 515–523.