Shelf life of tempeh processed with sub-supercritical carbon dioxides


  • Maria Erna Kustyawati University of Lampung, Department of Agriculture Product Technology, Bandar Lampung, 35145, Indonesia. Tel. : +6281369994986
  • Filli Pratama University of Sriwijaya, Department of Agriculture Technology, Palembang, 30139, Indonesia, Tel. : +628153818913
  • Daniel Saputra University of Sriwijaya, Department of Agriculture Technology, Palembang, 30139, Indonesia, Tel. : +6285279407485
  • Agus Wijaya University of Sriwijaya, Department of Agriculture Technology, Palembang, 30139, Indonesia, Tel. : +6281377484401



sub-supercritical CO2, kinetic change, shelf life, tempeh


Tempeh, a fermented soybean-based food originally from Indonesia, is a remarkably nutritious functional food with health benefits. Unfortunately, tempeh is highly perishable, with a shelf life of 24 – 48 hours. The goal of this research was to evaluate the possibility of a sub-supercritical CO2 technique to increase the shelf life of tempeh by measuring the changes in the L* (lightness) value and texture of tempeh via application of a kinetic approach and, based on the observations, to estimate its shelf life. Tempeh was processed with sub-supercritical CO2 at 6.3 MPa for 10 min, then together with unprocessed tempeh (control), stored for 5 days at temperatures of 20, 30 and 40 °C. The Accelerated Self-Life Test (ASLT) with the Arrhenius model was used to measure the shelf life of processed and control tempeh. The calculated shelf life of processed tempeh using the ASLT by the Arrhenius method was 2.43 days at 20 °C, 3.7 days at 30 °C and 1.4 days at 40 °C, and the shelf life of unprocessed tempeh was 3.33 days at 20 °C, 2.90 days at 30 °C and 2.56 days at 40 °C. The conclusion was that the use of sub-supercritical CO2 at 6.3 MPa for 10 min increased the shelf life of tempeh stored at 30 °C.


Download data is not yet available.


Ahmed, J., Shivhare, U. S., Raghavan, G. S. V. 2001. Color degradation kinetics and rheological characteristics of onion puree. Transactions of the American Society of Agricultural Engineers, vol. 44, no. 1, p. 95-98.

Barus, T., Wati, L., Melani, Suwanto, A., Yogiara. 2017. Diversity of protease-producing Bacillus spp. from fresh Indonesian tempeh based on 16S rRNA gene sequence. HAYATI Journal of Biosciences, vol. 24, no. 1, p. 35-40.

Bourdoux, S., Rajkovic, A., Sutter, S. D., Vermeulen, A., Spilimbergo, S., Zambon, A., Hofland, G., Uyttendaele, M., Devlieghere, F. 2018. Inactivation of Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 inoculated on coriander by freeze drying and supercritical CO2 drying. Innovative Food Science and Emerging Technologies, vol. 47, p. 180-186.

Briongos, H., Illera, A. E., Sanz, M. T., Melgosa, R., Beltrán, S., Solaesa, A. G. 2016. Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. LWT, vol. 74, p. 411-419.

Cappelletti, M., Ferrentino, G., Endrizzi, I., Aprea, E., Betta, E., Corollaro, M. L., Charles, M., Gasperi, F., Spilimbergo, S. 2015. High Pressure Carbon Dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. Journal of Food Engineering, vol. 145, p. 73-81.

Djunaidi, S., Puspitasari, M. D., Gunawan-Puteri, T., Wijaya, C. H., Prabawati, E. K. 2017. Physicochemical & microbial characterization of overripe tempeh. INSIST, vol. 2, no. 1, p. 48-51.

Duniaji, A. S., Wisaniyasa, W., Puspawati, W., Indri, H. 2019. Isolation and identification of R. oligosporus local isolate derived from several inocolum resources. International Journal of Current Microbiology and Applied Sciences, vol. 8, no. 9, p. 2319-7706.

Ferrentino, G., Balzan, S., and Spilimbergo, S. 2012. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham. International Journal Food Microbiology, vol. 161, no. 3, p. 189-196.

Ferrentino, G., Balaban, M. O., Ferrari, G., Poletto, M. 2010. Food treatment with high pressure carbon dioxide: Saccharomyces cerevisiae inactivation kinetics expressed as a function of CO2 solubility. The Journal of Supercritical Fluids, vol. 52, no. 1, 151-160.

Garcia-Gonzales, L., Geeraerd, A. H., Spilimbergo, S., Eltst, K., VanGinneken, L., Debevere, J., VanImpe, J. F., Devlieghere, F. 2007. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, vol. 17, no. 1, p. 1-28.

Guo, J., Wu, Y., Xu, G., Xiao, M., Zhang, Y., Chen. 2011. Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide. European Food Research Technology, vol. 232, p. 803-811.

Handoyo, T., Morita, N. 2006. Structural and functional properties of fermented soybean (tempeh) by using R.oligosporus. International Journal of Food Properties, vol. 9, no. 2, p. 347-355.

Hu, W., Zhou, L., Xu, Z., Zhang, Y., Liao, X. 2013. Enzyme inactivation in food processing using high pressure carbon dioxide technology. Critical Reviews in Food Science and Nutrition, vol. 53, no. 2, p. 145-161.

Illera, A. E., Sanz, M. T., Trigueros, E., Beltrán, S., Melgosa, R. 2018. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering, vol. 239, p. 64-71.

Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S. 2017. Mycelium composites: A review of engineering characteristics and growth kinetics. Journal of Bionanoscience, vol. 11, no. 4. p. 241-257.

Kanghae, A., Eungwanichayapant, D. P., Chukeatirote, E. 2017. Fatty acid profiles of fermented soybean prepared by Bacillus subtilis and Rhizopus oligosporus. Environmental and Experimental Biology, vol. 15, p. 173-176.

Kobayasi, S., Okazaki, N., Koseki, T. 1992. Purification and characterization of an antibiotic substance produced from Rhizopus oligosporus IFO 8631. Bioscience Biotechnology and Biochemistry, vol. 56, p. 94-98.

Kustyawati, M. E., Pratama, F., Saputra, D., Wijaya, A. 2018. Viability of molds and bacteria in tempeh processed with supercritical carbon dioxides during storage. International Journal of Food Science, vol. 2018, p. 1-7.

Kustyawati, M. E., Nawansih, O., Nurdjanah, S. 2017. Profile of aroma compounds and acceptability of modified tempeh. International Food Research Journal, vol. 24, no. 2, p. 734-740.

Labuza, T. P., Szybist, L. M. 2001. Open Dating of Foods. Trumbull, Connecticut, USA : Food and Nutrition Press, Inc, 239 p. ISBN 0-91 7678-53-2.

Li, H., Zhao, L., Wu, J., Zhang, Y., Liao, X. 2012. Inactivation of natural microorganisms in litchi juice by high-pressure carbon dioxide combined with mild heat and nisin. Food Microbiology, vol. 30, no. 1, p. 139-145.

Liao, H., Zhang, L., Hu, X., Liao, X. 2010. Effect of high pressure CO2 and mild heat processing on natural microorganisms in apple juice. International Journal of Food Microbiology, vol. 137, no. 1, p. 81-87.

Liu, X., Gao, Y., Xu, H., Hao, Q., Liu, G., Wang, Q. 2010. Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with continuous high pressure carbon dioxide. Food Chemistry, vol. 119, no. 1, p. 108-113.

Muslikhah, S., Anam, C., Andriani, M. A. M. 2014. Tempe storage by a method of modification atmosphere to maintaining quality and shelf life. Jurnal Teknosains Pangan, vol. 2, no. 3, p. 51-61. Avalaible at: (In Indonesian)

Niu, L., Li, D., Liu, C., Huang, W., Liao, X. 2019. Quality changes of orange juice after DPCD treatment. Journal of Food Quality, vol. 2019, p. 1-8.

Nout, M. J. R., Kiers, J. L. 2005. Tempe fermentation, innovation and functionality: Update into the third millenium. Journal of Applied Microbiology, vol. 98, no. 4, p. 789-805.

Pleva, P., Cabáková, V., Butor, I., Pachlová, V., Buňková, L. 2018. Biogenic amines content in the fermented asian food in the Czech Republic. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 292-298.

Saputra, D. 2006. Puffing dehydrated vegetable with carbon dioxide. Jurnal Keteknikan Pertanian, vol. 20, no. 2, p. 157-165. Available at: (In Indonesian)

Sparringa, R. A., Owens, J. D. 1999. Protein Utilization during soybean tempeh fermentation. Journal of Agricultural and Food Chemistry, vol. 47, no. 10, p. 4375-4378.

Wang, H. L., Ruttle, D. I., Hesseltine, C. W. 1969. Antibacterial compound from a soybean product fermented by Rhizopus oligosporus. Proceedings of the Society for Experimental Biology and Medicine, vol. 131, no. 2, p. 579-583.

Wati, D. A., Nadia, F. S., Isnawati, M., Sulchan, M., Afifah, D. N. 2020. The effect of processed Tempeh gembus to high sensitivity c-reactive protein (hsCRP) and high-density lipoprotein (HDL) levels in women with obesity. Potravinarstvo Slovak Journal of Food Sciences, vol. 14, no. 1, p. 8-16.

Witono, Y., Bambang W., Mujianto, M., Rachmawati, D. T. 2015. Amino acids identification of over fermented tempeh, the hydrolysate and the seasoning product hydrolysed by calotropin from crown flower (Calotropis gigantea). International Journal on Advanced Science, Engineering and Information Technology, vol. 5, no. 2, p. 103-106.

Zilic, S., Mogol, B. A., Akillioglu, G., Serpen, A., Delic, N., Gokmen, V. 2014. Effect of extrusion, infrared and microwave, processing on Maillard reaction products and phenolic compounds in soybean. Journal of the Science of Food and Agriculture, vol. 94, no. 1, p. 45-51.



How to Cite

Kustyawati, M. E., Pratama, F., Saputra, D., & Wijaya, A. (2020). Shelf life of tempeh processed with sub-supercritical carbon dioxides. Potravinarstvo Slovak Journal of Food Sciences, 14, 351–357.