Genetic divergence in Tunisian castor bean genotypes based on trap markers

Authors

  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4269 https://orcid.org/0000-0001-6265-1616
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4596 https://orcid.org/0000-0002-0349-4363
  • Želmí­ra Balážová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4327 https://orcid.org/0000-0002-6093-3908

DOI:

https://doi.org/10.5219/1292

Keywords:

castor, DNA, dendrogram, PCR, PIC

Abstract

In the present study, the representatives of the genus Ricinus communis collected from 12 different parts of Tunisia were differentiated by the DNA fingerprinting patterns using 30 TRAP primers. The efficacy of the TRAP technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using
30 primers for TRAP analysis produced 490 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (TRAP 04 x arb 1, TRAP 22 x arb 3 and TRAP 23 x arb 3) to 13 (TRAP 56 x arb 2), and the amplicon size ranged from 100 to 1600 bp. Of the 490 amplified bands, 377 were polymorphic, with an average of 5.71 polymorphic bands per primer. To determine the level of polymorphism in the analysed group of Tunisian castor genotypes polymorphic information content (PIC) was calculated. The lowest values of polymorphic information content were recorded for TRAP 10 x arb 1 (0.555) and the highest PIC values were detected for TRAP 44 x arb 2 (0.961) with an average of 0.770. A dendrogram was constructed from a genetic distance matrix based on profiles of the 30 TRAP primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Moreover, functional TRAP markers would be efficiently useful in genetic studies for castor genetic improvement.

Downloads

Download data is not yet available.

References

Agarwal, M., Shrivastava, N., Padh, H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., vol. 27, p. 617-631. https://doi.org/10.1007/s00299-008-0507-z

Allan, G., Williams, A., Rabinowicz, P. D., Chan, A. P., Ravel, J., Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Resour. Crop Evol., vol. 55, p. 365-378. https://doi.org/10.1007/s10722-007-9244-3

Al-Murish, T. M., Elshafei, A. A., Al-Doss, A. A. and Barakat, M .N. 2013. Genetic diversity of coffee (Coffea arabica L.) in Yemen via SRAP, TRAP and SSR markers. Journal of Food, Agriculture & Environment, vol. 11, no. 2, p. 411-416.

Alwala, S., Kimbeng, C. A., Veremis, J. C., Gravois, K. A. 2008. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica, vol. 164, p. 37-51. https://doi.org/10.1007/s10681-007-9634-9

Andru, S., Pan, Y. B., Thongthawee, S. Burner, D. M., Kimbeng, C. A. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet, vol. 123, p. 77-93. https://doi.org/10.1007/s00122-011-1568-x

Ansari, S., Solouki, M., Fakheri, B., Fazeli-Nasab, B., Mahdinezhad, N. 2018. Assesment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian clover (Trifolium Resupinatum L.). Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 657-666. https://doi.org/10.5219/960

Balážová, Ž., Gálová, Z., Vivodík, M., Chňapek, M., Hornyák Gregáňová, R. 2018. Molecular analysis of buckwheat using gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 546-552. https://doi.org/10.5219/954

Barakat, M. N., Al-Doss, A. A., Elshafei, A. A., Ghazy, A. I., Moustafa, K. A. 2013. Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. Australian Journal of Crop Science, vol. 7, no. 1, p. 104-111.

Bošeľová, D., Žiarovská, J. 2016. Direct PCR as the platform of Hedera helix, L. genotypying without the extraction of DNA. Journal of Central European Agriculture, vol. 17, no. 4, p. 941-949. https://doi.org/10.5513/jcea01/17.4.1795

Carmo, C. D., Santos, D. B., Alves, L. B., Oliveira, G. A. F., Oliveira, E. J. 2015. Development of TRAP (Target Region Amplification Polymorphism) as New Tool for Molecular Genetic Analysis in Cassava. Plant Mol. Biol. Rep., vol. 33, p. 1953-1966. https://doi.org/10.1007/s11105-015-0887-5

Cehula, M., Juríková, T., Žiarovská, J., Mlček, J., Kyseľ, M. 2019. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 490-496. https://doi.org/10.5219/1139

Costa, H. M., Ramos, V. D. 2004. Efeito do óleo de mamona em composições de borracha natural contendo sílica. Polímeros: Ciênc. Tecnol., vol. 14, p. 46-50. https://doi.org/10.1590/S0104-14282004000100013

Crotti-Franco, M., de Argollo Marques, D., Siqueira, W. J., Rocha Latado, R. 2014. Micropropagation of Jatropha curcas superior genotypes and evaluation of clonal fidelity by target region amplification polymorphism (TRAP) molecular marker and flow cytometry. African Journal of Biotechnology, vol. 13, no. 38, p. 3872-3880. https://doi.org/10.5897/AJB2014.13649

Dias Kanthack Junior, C. A., Vieira Manechini, J. R., Correa, R. X., Rossini Pinto, A. Ch., Borges da Costa, J., Monteiro Favero, T., Rossini Pinto, L. 2020. Genetic Structure Analysis in Sugarcane (Saccharum spp.) Using Target Region Amplification Polymorphism (TRAP) Markers Based on Sugar- and Lignin-Related Genes and Potential Application in Core Collection Development. Sugar Tech., p. 1-14. https://doi.org/10.1007/s12355-019-00791-0

Dong, H., Wang, C., Li, W., Yang, G. X., Yang, H., Wang, Y. R., Chen, M. H., Li, F. J., Feng, Y., Chen, G. 2012. Castor germplasm diversity analysis using AP-PCR and RMAPD. Acad Period Farm Proc 2012.

El-Fiki, A., Adly, M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 100-108. https://doi.org/10.5219/978

Fabriki-Ourang, S., Yousefi-Azarkhanian, M. 2018. Genetic variability and relationships among Salvia ecotypes/species revealed by TRAP-CoRAP markers. Biotechnology & biotechnological equipment, vol. 32, no. 6, p. 1486-1495. https://doi.org/10.1080/13102818.2018.1534555

FAOSTAT. 2014. Available at: http://www.fao.org/faostat/en/.

Farias da Silva, E., Barbosa de Sousa, S., Ferreira da Silva, G., Reis Sousa, N., do Nascimento Filho, F. J., Eiji Hanada, R. 2016. TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene, vol. 6, p. 43–47. https://doi.org/10.1016/j.plgene.2016.03.005

Feng, S., He, R., Yang, S., Chen, Z., Jiang, M., Lu, J., Wang, H. 2015. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene, vol. 567, p. 182-188. https://doi.org/10.1016/j.gene.2015.04.076

Foster, J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., Keim, P. 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol., vol. 10, p. 13-18. https://doi.org/10.1186/1471-2229-10-13

Gálová, Z., Vivodík, M., Balážová, Ž., Kuťka Hlozáková, T. 2015. Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, vol. 9, no. 1, p. 556-561. https://doi.org/10.5219/516

He, S., Xu, W., Li, F., Wang, Y., Liu, A. 2017. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. Plant Divers, vol. 39, no. 5, p. 300-307. https://doi.org/10.1016/j.pld.2017.05.007

Hu, J., Mou, B., Vick, B. A. 2007. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol, vol. 54, p. 1667-1674. https://doi.org/10.1007/s10722-006-9175-4

Hu, J., Vick, B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Report, vol. 2, p. 289-294. https://doi.org/10.1007/BF02772804

Cheng, D., Zhang, F., Liu, L., Xu, L., Chen, Y., Wang, X., Limera, C., Yu, R., Gong, Y. 2013. TRAP markers generated with resistant gene analog sequences andtheir application to genetic diversity analysis of radish germplasm. Scientia Horticulturae, vol. 161, p. 153-159. https://doi.org/10.1016/j.scienta.2013.07.004

Kallamadi, P. R., Ganga Rao Nadigatlab, V. P. R., Mulpuriba, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061

Kanti, M., Anjani, K., Usha Kiran, B., Vivekananda, K. 2015. Agro-morphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India. Czech J. Genet. Plant Breed., vol. 51, p. 96-109. https://doi.org/10.17221/205/2014-CJGPB

Kumar, Y., Kwon, S. J., Coyne, C. J., Hu, J., Grusak, M. A., Kisha, T. J., McGee, R. J., Sarker, A. 2014. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum L.) germplasm. Genet Resour Crop Evol., vol. 61, p. 965-977. https://doi.org/10.1007/s10722-014-0089-2

Kwon, S. J., Hu, J., Coyne, C. J. 2010. Genetic diversity and relationship among faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genetic Resources, vol. 8, no. 3, p. 204-213. https://doi.org/10.1017/S1479262110000201

Liu, F., Guo, Q., Shi, H., Cheng, B., Lu, Y., Goua, L., Wanga, J., Shen, W., Yan, S., Wu, M. 2016. Genetic variation in Whitmania pigra, Hirudo nipponica and Poecilobdella manillensis, three endemic and endangered species in China using SSR and TRAP markers. Gene, vol. 579, p. 172-182. https://doi.org/10.1016/j.gene.2015.12.055

Liu, F., Shi, H., Guo, Q., Lv, F., Yu, Y., Lv, L., Shen, W., Zhao, W., Zhang, M. 2015. Analysis of the genetic diversity and population structure of Perinereis aibuhitensis in China using TRAP and AFLP markers. Biochemical Systematics and Ecology, vol. 59, p. 194-203. https://doi.org/10.1016/j.bse.2015.01.002

Lu, Z., Qi, J. M., Fang, P. P., Su, J. G., Xu, J. T., Tao, A. F. 2010. Genetic diversity and phylogenetic relationship of castor germplasm as revealed by SRAP analysis. J Wuhan Bot Res., vol. 28, no. 1, p. 1-6. https://doi.org/10.3724/SP.J.1142.2010.00001

Luo, C., Wu, H. X., Yao, Q. S., Wang, S. B., Xu, W. T. 2015. Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Genet. Mol. Res., vol. 14, no. 3, p. 7914-7919. https://doi.org/10.4238/2015.July.14.17

Luo, C., Zhang, F., Zhang, Q. L., Guo, D. Y., Luo, Z. R. 2013. Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki. Genet. Mol. Res. vol. 12, no. 3, p. 2841-2851. https://doi.org/10.4238/2013.January.9.3

Mei-Lian, T., Yan, M. F., Wang, L., Wang, L., Yan, X. C. 2012. Analysis of genetic diversity in castor bean by SRAP markers. J. Mong Uni Natl 2012.

Miklas, P. N., Hu, J., Grünwald, N. J., Larsen, K. M. 2006. Potential Application of TRAP (Targeted Region Amplified Polymorphism) Markers for Mapping and Tagging Disease Resistance Traits in Common Bean. Genomics, Molecular Genetics & Biotechnology, vol. 46, no. 2, p. 910-916. https://doi.org/10.2135/cropsci2005.08-0242

Mirajkar, S. J., Rai, A. N., Vaidya, E. R., Moharil, M. P., Dudhare, M. S., Suprasanna, P. 2017. TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.). Plant Gene, vol. 9, p. 64-70. https://doi.org/10.1016/j.plgene.2017.01.002

Mutlu, H., Meier, M. A. R. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Technol., vol. 112, p. 10-30. https://doi.org/10.1002/ejlt.200900138

Quintero, V., Anaya-López, J. L., Núñez-Colín, C. A., Zamarripa-Colmenero, A., Montes-García, N., Solís-Bonilla, J. L., Aguilar-Rangel, M. R. 2013. Assessing the genetic diversity of castor bean from Chiapas, México using SSR and AFLP markers. Ind. Crops Prod., vol. 41, p. 134-143. https://doi.org/10.1016/j.indcrop.2012.04.033

Ražná, K., Bežo, M., Hlavačková, L., Žiarovská, J., Miko, M., Gažo, J., Habán, M. 2016. MicroRNA (miRNA) in food resources and medicinal plant. Potravinarstvo, vol. 10, no. 1, p. 188-194. https://doi.org/10.5219/583

Reddy, K. P., Nadigatla, V. P. R. G. R., Mulpuri, S. 2015. Molecular diversity in castor (Ricinus communis L.). Ind. Crops Prod., vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061

Rukhsar, P. M. P., Parmar, D. J., Kalola, A. D., Kumar, S. 2017. Morphological and molecular diversity patterns in castor germplasm accessions. Ind. Crops Prod., vol. 97, p. 316-323. https://doi.org/10.1016/j.indcrop.2016.12.036

Simões, K. S., Silva, S. A., Machado, E. L. and Brasileiro, H. S. 2017a. Development of TRAP primers for Ricinus communis L. Genetics and Molecular Research, vol. 16, no. 2, p. 100-113. https://doi.org/10.4238/gmr16029647

Simões, K. S., Silva, S. A., Machado, E. L., Silva, M. S. 2017b. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, vol. 16, no. 3, p. 100-112. https://doi.org/10.4238/gmr16039776

Singh, R. B., Singh, B., Singh, R. K. 2017. Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Ind. J. Plant. Physiol., vol. 22, no. 3, p. 332–338. https://doi.org/10.1007/s40502-017-0314-z

Srivong, T., Zhu, Y. J., Sakuanrungsirikul, S., Nagai, Ch., Kosittrakun, M. 2019. Evaluating sugarcane genotypes for genetic variation with differential sucrose accumulation using TRAP markers and partial Sai nucleotide polymorphism. ScienceAsia, vol. 45, p. 309-317. https://doi.org/10.2306/scienceasia1513-1874.2019.45.309

Vasconcelos, S., Onofre, A. V. C., Milani, M., Benko-Iseppon, A. M., Brasileiro-Vidal, A. C. 2016. Accessing genetic diversity levels of Brazilian genotypes of castor with AFLP and ISSR markers. Pesq Agropec Pernamb, vol. 21, p. 24-31. https://doi.org/10.12661/pap.2016.005

Vivodík, M., Balážová, Ž., Gálová, Z. and Kuťka Hlozáková, T. 2015. Differentiation of ricin using RAPD markers. Pak. J. Bot., vol. 47, no. 4, p. 1341-1345.

Vivodík, M., Saadaoui, E., Balážová, Ž., Gálová, Z. and Petrovičová, L. 2019. Genetic diversity in Tunisian castor genotypes (Ricinus Communis L.) detected using RAPD markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 294-300. https://doi.org/10.5219/1116

Vyhnánek, T., Trojan, V., Štiasna, K., Presinszká, M., Hřivna, L., Mrkvicová, E., Havel, L. 2015. Testing of DNA isolation for the identification of Hemp. Potravinárstvo, vol. 9, no. 1, p. 393-397. https://doi.org/10.5219/509

Wang, Ch., Li, G., Zhang, Z., Peng, M., Shang, Y., Luo, R., Chen, Y. 2013. Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochemical Systematics and Ecology, vol. 51, p. 301-307. https://doi.org/10.1016/j.bse.2013.09.017

Wang, M. L., Dzievit, M., Chen, Z., Morris, J. B., Norris, J. E., Barkley, N. A., Tonnis, B., Pederson, G. A., Yu, J. 2017. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome, vol. 60, no. 3, p. 193-200. https://doi.org/10.1139/gen-2016-0116

Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z

Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J. 2007. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. J. Integr. Plant Biol., vol. 49, no. 5, p. 716−724. https://doi.org/10.1111/j.1744-7909.2007.00459.x

Yue, B., Vick, B. A., Cai, X., Hu, J. 2010. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding, vol. 129, p. 24-28. https://doi.org/10.1111/j.1439-0523.2009.01661.x

Zhang, J., Guo, Q., Zheng, D. 2013. Genetic diversity analysis of Pinellia ternata based on SRAP and TRAP markers. Biochemical Systematics and Ecology, vol. 50, p. 258–265. https://doi.org/10.1016/j.bse.2013.03.052

Žiarovská, J., Fialková, V., Zamiešková, L., Bilčíková, J., Zeleňáková, L., Kačániová, M. 2019. Expression pattern of thaumatin in the selected red varieties of Vitis vinifera, L. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 547-552. https://doi.org/10.5219/1057

Žiarovská, J., Kyseľ, M., Cimermanová, R., Knoteková, L. 2017. Effect of DNA extraction method in the Rosa Canina L. identification under different processing temperature. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 190-196. https://doi.org/10.5219/717

Žiarovská, J., Zeleňáková, L., Fernández Cusimamani, E., Kačániová, M. 2018. A thaumatin-like genomic sequence identification in Vitis Vinifera L., stormy wines and musts based on direct PCR. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 226-232. https://doi.org/10.5219/892

Published

2020-07-28

How to Cite

Vivodí­k, M., Gálová, Z., & Balážová, Želmí­ra. (2020). Genetic divergence in Tunisian castor bean genotypes based on trap markers. Potravinarstvo Slovak Journal of Food Sciences, 14, 510–518. https://doi.org/10.5219/1292

Most read articles by the same author(s)

1 2 > >>