Modelling of the process of vybromechanical activation of plant raw material hydrolysis for pectin extraction

Authors

  • Igor Palamarchuk National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Processes and Equipment for Processing of Agricultural Production, Heroev Oborony Str., 12 B, Kyiv, 03040, Ukraine, Tel.: +380677544493
  • Mikhailo Mushtruk National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Processes and Equipment for Processing of Agricultural Production, Heroev Oborony Str., 12 B, Kyiv, 03040, Ukraine, Tel.: +38098941-26-06 https://orcid.org/0000-0002-3646-1226
  • Vladislav Sukhenko National University of Life and Environmental Sciences of Ukraine, Department of Standardization and Certifying of Agricultural Products, Heroiv Oborony str, 15, 03041, Kyiv, Ukraine, Tel.: +380679912194 https://orcid.org/0000-0002-8325-3331
  • Vladislav Dudchenko National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Processes and Equipment for Processing of Agricultural Production, Heroev Oborony Str., 12 B, Kyiv, 03040, Ukraine, Tel.: +380963670733
  • Lidija Korets Lyubeshiv Technical College of Lutsk Technical University, Brestska Str. 7, 44200, Lubeshiv, Ukraine, Tel.: +38957891756
  • Aleksandr Litvinenko National University of Food Technology, Educational and Scientific Institute of Food Technology, Department of biotechnology of fermentation and winemaking products, Volodymyrska Str. 68, 01601 Kyiv, Ukraine, Tel.: +38(067)702-02-68 https://orcid.org/0000-0001-8975-2265
  • Olena Deviatko National University of Life and Environmental Sciences of Ukraine, Mechanical and Technological Faculty, Department of Technical Service and Engineering Management th. M.P. Momotenka, Heroev Oborony Str., 12 B, Kyiv, 03040, Ukraine, Tel.: +38(066)205-43-01
  • Sergii Ulianko Poltava State Agrarian Academy, Technology of production and processing of livestock products Faculty, Department of Feeding and Zohygiene of farm animals, Skovorody Str. 1/3, Poltava, 36003, Ukraine Tel.: +380956485623
  • Natalia Slobodyanyuk National University of Life and Environmental Sciences of Ukraine Department of Standardization and Certifying of Agricultural Products, Heroiv Oborony str, 15, 03041, Kyiv, Ukraine, Tel.: +380982768508

DOI:

https://doi.org/10.5219/1305

Keywords:

plant raw material, hydrolysis, pectin, vibration motor, vibrator

Abstract

Centrifugal and vibrational technological effects are among the main approaches to intensify the process of plant raw materials hydrolysis for pectin extraction. With the impulse intensification of such a process, it is possible not only to increase its efficiency, but also to achieve the compactness of the equipment, reduce the cost of electricity and improve the quality of the product of hydrolysis. The hypothesis is confirmed, according to which the vibro-centrifugal intensification of hydrolysis increases the driving force of the process by not only activating the material flows of raw materials and reagents, but also by reducing the resistance in the technological environment.

Graphical and analytical dependencies of the power and energy parameters of the oscillatory system were obtained, which proved the overcoming of the flow resistance of the liquid medium in the entire speed range of the drive shaft with the potential to intensify the process at a power consumption of 2.0 – 3.0 kW and or by the force of 2.3 – 2.5 kN using the Lagrange and Cauchy methods for composing and solving the equations of motion of the moving components of the tested hydrolyser with vibrating activators, and the methods of mathematical analysis and their processing in the MathCAD. The analysis of the presented parameters of the studied process of mixing the pectin-containing mass in the hydrolyser allowed us to determine the rational mode parameters of processing, which correspond to the angular velocity of the drive shaft  rad/s at the power consumption of 500 – 600 watts.

Downloads

Download data is not yet available.

References

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, L., Lecomte, L., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V. 2008. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Sciences, 105, vol. 4, p. 1232-1237. https://doi.org/10.1073/pnas.0711437105

Bandura, V., Turcan, O., Palamarchuk, V. 2015. Experimental study of technological parameters of the process of infrared drying of a moving ball of oilseed crops. MOTROL Commission of Motorization and Energetics in Agriculture, vol. 17, no. 4, p. 211-214.

Barbaro, A., Taylor, K., Trethewey, P.F., Youseff, L., Birnir, B. 2009. Discrete and continuous models of the dynamics of pelagic fish: application to the capelin. Math. Comput. Simul., vol. 79, p. 3397-3414. https://doi.org/10.1016/j.matcom.2008.11.018

Bubelová, Z., Cerníková, M., Bunková, L., Talár, J., Zajícek, V., Foltin, P., Bunka, F. 2017. Quality changes of longlife foods during threemonth storage at different temperatures. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 43-51. https://doi.org/10.5219/688

Burger, M., Capasso, V., Morale, D. 2007. On an aggregation model with long and short range interactions. Nonlinear Analysis. Real World Applications. Int. Multidis. J., 8, p. 939-958. https://doi.org/10.1016/j.nonrwa.2006.04.002

Carrillo, J. A., Toscani, G. 2007. Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma, 6, p. 75-198.

Chuang, Y. L., Huang, Y. R., D’Orsogna, M. R., Bertozzi, A. L. 2007. Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE Int. Conf. Robotics Automation, p. 2292-2299. https://doi.org/10.1109/ROBOT.2007.363661

Couzin, I. D., Krause, J., Franks, N. R., Levin, S. A. 2005. Effective leadership and decision making in animal groups on the move. Nature, 433, p. 513-516. https://doi.org/10.1038/nature03236

Czako, P., Zajác, P., Čapla, J., Vietoris, V., Maršálková, L., Čurlej, J., Belej, L., Golian, J., Benešová, L., Martišová, P. 2018. The effect of UV-C irradiation on grape juice turbidity, sensoric properties and microbial count. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 1-10. https://doi.org/10.5219/856

Degond, P., Motsch, S. 2008. Large-scale dynamics of the Persistent Turing Walker model of fish behavior. J. Stat. Phys., vol. 131, p. 989-1021. https://doi.org/10.1007/s10955-008-9529-8

DSTU 7466-2001. State standard of Ukraine. Fruit and Vegetable Products. Determination of Oxymethylfurfural Content. General specifications. Quality management systems – Requirements.

Ha, S.-Y., Liu, J.-G. 2009. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Comm. Math. Sci., 7, p. 297-325. https://doi.org/10.4310/CMS.2009.v7.n2.a2

Kolyanovska, L. M., Palamarchuk, I. P., Sukhenko, Y., Mussabekova, A., Bissarinov, B., Popiel, P., Mushtruk, M. M., Sukhenkko, V., Vasuliev, V., Semko, T., Tyshchenko, L. 2019. Mathematical modeling of the extraction process of oil-containing raw materials with pulsed intensification of heat of mass transfer. Proceedings of SPIE - The International Society for Optical Engineering, 25 p. https://doi.org/10.1117/12.2522354

Krasnikov, V., Ginzburg, A., Syroedov, V., Fedutina, G. 1985. Infrared radiation in food technology. Materials of the Fifth All-Union Scientific and Technical Conference "Electrophysical Methods of Food Processing", Moscow, Russia : MTIMMP, p. 12-16.

Nowak, D., Lewicki, P. P. 2004. Infrared drying of apple slices. Innovative Food Science and Engineering Technologies, vol. 5, no. 3, p. 353-360 https://doi.org/10.1016/j.ifset.2004.03.003

Palamarchuk, I., Bandura, V., Palamarchuk, V. 2013. Analysis of dynamics of vibroconveyor technological system with kinematic combined vibroexcitation. MOTROL Commission of Motorization and Energetics in Agriculture, vol. 15, no. 4, p. 314-323.

Palamarchuk, I., Mushtruk, M., Vasyliv, V., Zheplinska, M. 2019. Substantiation of regime parameters of vibrating conveyor infrared dryers. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 751-758. https://doi.org/10.5219/1184

Palamarchuk, I., Turcan, O., Palamarchuk, V. 2015. Justification of the design and technological scheme of infra-red vibrating conveyor dryer for post-harvest processing of loose agricultural products. Collection of scientific works of Vinnytsia National Agrarian University. Series: Engineering, vol. 1, no. 89, p. 117-123.

Palamarchuk, I., Turcan, O., Palamarchuk, V., Kharchenko, S. 2016. Investigation of the competitiveness of the vibrating conveyor infra-red dryer for post-harvesting of grain. Eastern European Journal of Advanced Technology, vol. 2/7, no. 80, 79-85. https://doi.org/10.15587/1729-4061.2016.65887

Rachmat, R., Hadipernata, M., Sumangat, D. 2010. Pemanfaatan Teknologi Far Infra Red (FIR) Pada Pengeringan Rempah. Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian, vol. 22, no. 1, p. 31- 37.

Sukhenko, Y., Mushtruk, M., Vasyliv, V., Sukhenko, V., Dudchenko, V. 2020. Production of pumpkin pectin paste. Lecture Notes in Mechanical Engineering, p. 805-812. https://doi.org/10.1007/978-3-030-22365-6_80

Sukhenko, Y., Sukhenko, V., Mushtruk M., Litvinenko, A. 2019. Mathematical model of corrosive-mechanic wear materials in technological medium of food industry. Lecture Notes in Mechanical Engineering, p. 507-514. https://doi.org/10.1007/978-3-319-93587-4_53

Sukhenko, Y., Sukhenko, V., Mushtruk, M., Vasuliv, V., Boyko, Y. 2017. Changing the quality of ground meat for sausage products in the process of grinding. Eastern European Journal of Enterprise Technologies, vol. 4, no. 11, p. 56-63.

UIIP, 1993. Ukrainian Institute of Intellectual Property. Method of production of pectine paste. Patent owner: Sukhenko,Yu., Baric’ka, I., Nekoz, O., Slink, O.Int.Cl. A23L 1/0524. Ukrane. Patent no 10496, 1993-06-04.

Yanovich, V., Drachishin, V., Palamarchuk, V., Sizov, T. 2015. Experimental estimation of amplitude-frequency characteristics of vibroconveyor technological machine. Vibration in technology and technologies, vol. 3, no. 78, p. 145-150.

Zavialov, V., Yanovich, V., Drachyshyn, V., Palamarchuk, V. 2015. Experimental estimation of energy characteristics of vibroconveyor technological machine. Vibration in technology and technologies, vol. 3, no. 79, p. 79-85.

Zheplinska, M., Mushtruk, M., Vasyliv, V., Deviatko, O. 2019. Investigation of the process of production of crafted beer with spicy and aromatic raw materials. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 806-814. https://doi.org/10.5219/1183

Zverev, S., Sesikashvili, O. 2018. Heating and Dehydration of Grain and Cereals at a Combined Energy Supply. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, p. 79-90. https://doi.org/10.5219/840

Published

2020-05-28

How to Cite

Palamarchuk, I. ., Mushtruk, M., Sukhenko, V. ., Dudchenko, V. ., Korets, L., Litvinenko, A., Deviatko, O., Ulianko, S. ., & Slobodyanyuk, N. (2020). Modelling of the process of vybromechanical activation of plant raw material hydrolysis for pectin extraction. Potravinarstvo Slovak Journal of Food Sciences, 14, 239–246. https://doi.org/10.5219/1305

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.