Occurrence of resistance to antibiotics therapy in coagulase-positive and coagulase-negative Staphylococci isolated from sheep´s milk in holding in Slovakia


  • Milan Vasiľ University of Veterinary Medicine and Pharmacy, Department of Animal Husbandry, UVLF, Komenského 73, 041 81 Košice, Slovakia, Tel.: +421905385671 https://orcid.org/0000-0002-3607-818X
  • Zuzana Farkašová ., University of Veterinary Medicine and Pharmacy, Department of Animal Husbandry, UVLF, Komenského 73 041 81, Košice, Slovakia, Tel.: +421905201646
  • Juraj Elečko University of Veterinary Medicine and Pharmacy, Department of Animal Husbandry, UVLF, Komenského 73, 041 81 Košice, Slovakia, Tel.: +421915986734
  • František Zigo University of Veterinary Medicine and Pharmacy, Department of Animal Husbandry, Komenského 73, 041 81 Košice, Slovakia, Tel.: +421908689722 https://orcid.org/0000-0002-2791-166X




Sheep milk, coagulase-positive staphylococci, coagulase-negative staphylococci, antibiotics resistance, mastitis


The occurrence of bacteria Staphylococcus spp. was examined in a total of 3466 individuals and in 12 pool milk samples from 2017 to 2019. The experiment was carried out in two herds of the breed of sheep, Improved Valaska, in the Slovakia region. Eleven species of the genus Staphylococcus spp. (n = 431) were isolated and taxonomically identified. From the coagulase-positive staphylococci (CPS), S. aureus was isolated during the reporting period, however, most often in the third year (50). The incidence of S. intermedius and S. hyicus were irregular. The incidence of S. schleiferi was highest at the end of the follow-up duration. From the coagulase-negative staphylococci (CNS) (n = 158), were isolated
S. epidermidis present in 20.4% (88) and S. chromogenes 11.4 % (49), S. caprae, S. xylosus, and other species rarely occurred. S. aureus (n = 133) showed maximum resistance to erythromycin 12.0%, novobiocin 10.5%, and neomycin 9.0%. The incidence of intermedial susceptibility was observed predominantly to a penicillin (16 strains), novobiocin (11 strains), erythromycin (14 strains), oxacillin, and cloxacillin (12 strains), neomycin (11 strains), and lincomycin (9 strains). Observantly, S. schleiferi (n = 101) showed the highest resistance to novobiocin (5.9%) and erythromycin (5.0%), however, a high incidence of intermediate susceptibility to erythromycin (9), amoxicillin, novobiocin (8), ampicillin, lincomycin (7), penicillin, methicilin and cefoperazone (5 strains) can be identified as adverse. The incidence of resistant and intermediate sensitive test strains S. aureus and S. schleiferi, especially for erythromycin, novobiocin, and neomycin, which are often used to treat udder inflammation in sheep, is relatively adverse.


Download data is not yet available.


Becker, K., Heilmann, C., Peters, G. 2014. Coagulase-Negative Staphylococci. Clinical Microbiology Reviews, vol. 27, no. 4, p. 870-926. https://doi.org/10.1128/CMR.00109-13

Beuron, D. C., Cortinhas, C. S., Botaro, B. G., Macedo, S. N., Gonçalves, J. L., Brito, M. A. V. P., Santos, M. V. 2014. Risk factors associated with the antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis. Pesquisa Veterinária Brasileira, vol. 34, no. 10, p. 947-952. https://doi.org/10.1590/S0100-736X2014001000004

Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samanta, I., Mahanti, A., Das, A. K., Das, G., Dandapat, P., Bandyopadhyay, S. 2016. The first report on Vancomycin-resistant Staphylococcus aureus in bovine and Caprine Milk. Microbial Drug Resistance, vol. 22, no. 8, p. 675-681. https://doi.org/10.1089/mdr.2015.0330

Ceniti, C., Britti, D., Santoro, A. M. L., Musarella, R., Ciambrone, L., Casalinuovo, F., Costanzo, N. 2017. Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Italian Journal of Food. Safety, vol. 6, no. 2, p. 84-87. https://doi.org/10.4081/ijfs.2017.6612

Ergün, Y., Aslantaş, Ö., Doğruer, G., Kireçci, E., Saribay, M. K., Ateş, T. C., Ülkü, A., Demir, C. 2009. Prevalence and etiology of subclinical mastitis in Awashi dairy ewes in southern Turkey. The Turkish Journal of Veterinary and Animal Sciences, vol. 6, no. 33, p. 477-483. https://doi.org/10.3906/vet-0803-23

Ergün, Y., Aslantas, O., Kirecci, E., Ozturk, F., Ceylan, A, Boyar, Y. 2012. Antimicrobial susceptibility, presence of resistance genes and biofilm formation in coagulase negative staphylococci isolated from subclinical sheep mastitis. Kafkas Universitesi Veteriner Fakultesi Dergisi, vol. 18, no. 3, p. 449-456. https://doi.org/10.9775/kvfd.2011.5643

EUCAST. 2014. European Society of Clinical Microbiology and Infectious Diseases Disk Diffusion Method for Antimicrobial Susceptibility Testing – Version 5.0. Available at: http://www.eucast.org

Fthenakis, G. C. 1994. Prevalence and aetiology of subclinical mastitis in ewes of southern Greece. Small Ruminant Research, vol. 13, no. 3, p. 293-300. https://doi.org/10.1016/0921-4488(94)90078-7

Gomes, F., Henriques, M. 2015. Control of bovine mastitis: old and recent therapeutic approaches, Current Microbiology, vol. 72, p. 377-382. https://doi.org/10.1007/s00284-015-0958-8

Hendriksen, R. S., Mevius, D. J., Schroeter, A., Teale, C., Meunier, D., Butaye, P., Franco, A., Utinane, A., Amado, A., Moreno, M., Greko, C., Stärk, K., Berghold, C., Myllyniemi, A. L., Wasyl, D., Sunde, M., Aarestrup, F. M. 2008. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004. Acta Veterinaria Scandinavica, vol. 50, 10 p. https://doi.org/10.1186/1751-0147-50-28

Chambers, H. F. 2001. Antimicrobial agents: General considerations. In Harmam, J. G., Limbird, L. E., Gilman, A. G. The Pharmacological Basis of Therapeutics. 10th edn. New York, USA : McGraw-Hill Medical, p. 1143-1170.

Kabrt, M. 2013. Aplicated statistics: Test chí-square independence in contingence table. Available at: http://www.milankabrt.cz/testNezavislosti/

Legarra, A., Ramón, M., Ugarte, E., Pérez-Guzmán, M. D., Arranz, J. 2007. Economic weights of somatic cells core in dairy sheep. Animal, vol. 1, no. 2, p. 205-212. https://doi.org/10.1017/S1751731107657826

Leitner, G., Silanikove, N., Merin, U. 2008. Estimate of milk and curd yield loss of sheep and goats with intramammary infection and its relation to somatic cell count. Small Ruminant Research, vol. 74, no. 1-3, p. 221-225. https://doi.org/10.1016/j.smallrumres.2007.02.009

Martins, K. B., Faccioli, P. Y., Bonesso, M. F., Fernandes, S., Oliveira, A. A., Dantas, A., Zafalon, L. F., Cunha, M. D. R. S. 2017. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. Journal of Dairy Science, vol. 100, no. 3, p. 2184-2195. https://doi.org/10.3168/jds.2016-11583

Minst, K., Märtlbauer, E., Miller, T., Meyer, C. 2012. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents, Journal of Dairy Sciences, vol. 95, no. 12, p. 6957-6962. https://doi.org/10.3168/jds.2012-5852

Moniri, R., Dastegholi, K., Akramian, A. 2007. Increasing Resistant coagulase negative staphylococci in Bovine Clinical Mastitis. Pakistan Journal of Biological Sciences, no. 10, vol. 15, p. 2465-2469. https://doi.org/10.3923/pjbs.2007.2465.2469

Mørk, T., Waage, S., Tollersrud, T., Kvitle, B., Sviland, S. 2007. Clinical mastitis in ewes, bacteriology, epidemiology and clinical features. Acta Veterinaria Scandinavica, vol. 49, 8 p. https://doi.org/10.1186/1751-0147-49-23

Onni, T., Sanna, G., Larsen, J., Tola, S., 2011. Antimicrobial susceptibilities and population structure of Staphylococcus epidermidis associated with ovine mastitis. Veterinary Microbiology, vol. 148, no. 1, p. 45-50. https://doi.org/10.1016/j.vetmic.2010.07.024

Pieterse, R., Todorov, S. D. 2010. Bacteriocins – exploring alternatives to antibiotics in mastitis treatment. Brazilian Journal of Microbiology, vol. 41, p. 542-562. https://doi.org/10.1590/S1517-83822010000300003

Riggio, V., Portolano, B. 2015. Genetic selection for reduced Somatic Cell Counts in sheep milk: A review. Small Ruminant Research, vol. 126, no. 1, p. 33-42. https://doi.org/10.1016/j.smallrumres.2015.01.020

Rupp, R., Bergonier, D., Dion, S., Hygonenq, M. C., Aurel, M. R., Robert-Granié, C., Foucras, G. 2009. Response to somatic cell count-based selection for mastitis resistance in a divergent selection experiment in sheep. Journal of Dairy Science, vol. 92, no. 3, p. 1203-1219. https://doi.org/10.3168/jds.2008-1435

Rupp, R., Boichard, D. 2003. Genetics of resistance to mastitis in dairy cattle. Veterinary Research, vol. 34, p. 671-688. https://doi.org/10.1051/vetres:2003020

Rupp, R., Foucras, G. 2010. Breeding of disease resistance in farm animals. p. 183-212. ISBN 9781845935559. https://doi.org/10.1079/9781845935559.0183

Schmidt, T., Kock, M. M., Ehlers, M. M. 2015. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. Journal of Dairy Science, vol. 98, no. 9, p. 6256-6269. https://doi.org/10.3168/jds.2015-9715

Schwarz, S., Silley, P., Simjee, S., Woodford, N., van Duijkeren, E., Johnson, A. P., Gaastra, W. 2010. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. Journal of Antimicrobial Chemotherapy, vol. 65, no. 4, p. 601-604. https://doi.org/10.1093/jac/dkq037

Smith, K., Hogan, J. 2001. The world of mastitis 2nd International Symposium on mastitis and milk quality. Canada: Vancouver.

Taponen, S., Simojoki, H., Haveri, M., Larsen, H. D., Pyörälä, S. 2006. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Veterinary Microbiology, vol. 115, no. 1-3, p. 199-207. https://doi.org/10.1016/j.vetmic.2006.02.001

Tolone, M., Larrondo, C., Yáñez, C. M., Newman, S., Sardina, M. T., Portolano, B. 2016. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Veterinary Research, vol. 12, 7 p. https://doi.org/10.1186/s12917-016-0781-x

Unal, N., Çinar, O. D. 2012. Detection of staphylococcal enterotoxin, methicillin-resistant and Panton-Valentine leukocidin genes in coagulase-negative staphylococci isolated from cows and ewes with subclinical mastitis. Tropical Animal Health and Production, vol. 44, p. 369-375. https://doi.org/10.1007/s11250-011-0032-x

Vasil, M. 2004. Inflammation of the mammary gland of dairy cows. University of Veterinary Medicine in Košice. ISBN 80-8077-005-0.

Vasileiou, N. G. C., Chatzopoulos, D. C., Sarrou, S., Fragkou, I. A., Katsafadou, A. I., Mavrogianni, V. S., Petinaki, E., Fthenakis, G. C. 2019. Role of staphylococci in mastitis in sheep. Journal of Dairy Research, vol. 86, no. 3, p. 254-266. https://doi.org/10.1017/S0022029919000591

Vautor, E., Cockfield, J., Le Marechal, C., Le Loir, Y., Chevalier, M., Robinson, D. A., Thiery, R., Lindsay, J. 2009. Difference in virulence between Staphylococcus aureus isolates causing gangrenous mastitis versus subclinical mastitis in a dairy sheep flock. Veterinary Research, vol. 40, no. 6, 11 p. https://doi.org/10.1051/vetres/2009039



How to Cite

Vasiľ, M., Farkašová, Z., Elečko, J. ., & Zigo, F. (2020). Occurrence of resistance to antibiotics therapy in coagulase-positive and coagulase-negative Staphylococci isolated from sheep´s milk in holding in Slovakia. Potravinarstvo Slovak Journal of Food Sciences, 14, 781–787. https://doi.org/10.5219/1333

Most read articles by the same author(s)

1 2 > >>