Adaptation of two-dimensional electrophoresis for muscle tissue analysis

Authors

  • Anastasiya Akhremko V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +79152379497 https://orcid.org/0000-0002-0211-8171
  • Ekaterina Romanovna Vasilevskaya V. M. Gorbatov, Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +79688223598 https://orcid.org/0000-0002-4752-3939
  • Liliya Fedulova V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +74956769211 https://orcid.org/0000-0003-3573-930X

DOI:

https://doi.org/10.5219/1380

Keywords:

two-dimensional electrophoresis, muscle protein, isoelectric focusing, meat

Abstract

It is important to understand the molecular mechanisms that take place in muscle tissues and to predict meat quality characteristics. One of the most popular methods is two-dimensional electrophoresis, which allows us to visualize, share and identify different molecules, including meat proteins. However, the standard conditions of this method are not universal for all types of raw material, so the authors suggest a new variation of two-dimensional electrophoresis for muscle tissue analysis. Samples were tested by the classical version of isoelectric focusing (cathode buffer in the top and anode buffer in the bottom chamber of the electrophoresis cell) and its variation (anode buffer in the top and cathode buffer in the bottom chamber of the electrophoresis cell). Next, extruded gels were incubated in two different buffer systems: the first was equilibration buffer I (6 M urea, 20% w/v glycerol, 2% w/v SDS and 1% w/v Ditiothreitol in 375 mM Tris-HCl buffer, pH 8.8) followed by equilibration buffer II (6 M urea, 20% w/v glycerol, 2% w/v SDS and 4% w/v iodoacetamide in 375 mM Tris-HCl buffer pH 8.8 and the second, buffer А, consisting of 5 M urea, 2% w/v SDS, 5% v/v mercaptoethanol, 62.5 mM Tris-HCl buffer, pH 6.8 and 0.01% w/v bromophenol blue. Electrophoretic studies of muscle tissue revealed the best protein separation after changing the direction of the current (authors' variation), while no differences were detected after changing incubation buffers.

Downloads

Download data is not yet available.

References

Bendixen, E. 2005. The use of proteomics in meat science. Meat Science, vol. 71, no. 1, p. 138-149. https://doi.org/10.1016/j.meatsci.2005.03.013

Bendixen, E., Taylor, R., Hollung, K., Hildrum, K. I., Picard, B., Bouley, J. 2005. Proteomics, an approach towards understanding the biology of meat quality. Indicators of Milk and Beef Quality (ed. JF Hocquette and S Gigli), vol. 112, p. 81-94.

Cao, C., Xiao, Z., Ge, C., Wu, Y. 2020. Application and research progress of proteomics in chicken meat quality and identification: a review. Food Reviews International, 23 p. https://doi.org/10.1080/87559129.2020.1733594

Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., Kotenkova, E. A. 2017. Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 539-543. https://doi.org/10.5219/590

Colangeli, M., Giardinà, C., Giberti, C., Vernia, C. 2018. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. Physical Review E, vol. 97, no. 3. https://doi.org/10.1103/PhysRevE.97.030103

D´Alessandro, A., Marrocco, C., Zolla, V., D´Andrea, M., Zolla, L. 2011. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: metabolomics and proteomics intertwined. Journal of Proteomics, vol. 75, no. 2, p. 610-627. https://doi.org/10.1016/j.jprot.2011.08.024

Davoli, R., Bigi, D., Fontanesi, L., Zambonelli, P., Yerle, M., Zijlstra, C., Bosma, A. A., Robic, A., Russo, V. 2000. Mapping of 14 expressed sequence tags (ESTs) from porcine skeletal muscle by somatic cell hybrid analysis. Animal Genetics, vol. 31, no. 6, p. 400-403. https://doi.org/10.1046/j.1365-2052.2000.00687.x

Di Luca, A., Hamill, R. M., Mullen, A. M., Slavov, N., Elia, G. 2016. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate. PLOS ONE, vol. 11, no 3, p. e0150605. https://doi.org/10.1371/journal.pone.0150605

Drousiotis, K., Koutalianos, D., Baumann, C. G., Bullard, B. 2020. Tropomyosin as a Stretch Sensor in the Troponin Bridges of Insect Flight Muscle. Biophysical Journal, vol. 118, no. 3, p. 495a. https://doi.org/10.1016/j.bpj.2019.11.2738

Grove, H., Hollung, K., Uhlen, A. K., Martens, H., Faergestad, E. M. 2006. Challenges related to analysis of protein spot volumes from two-dimensional gel electrophoresis as revealed by replicate gels. Journal of Proteome Research, vol. 5, no. 12, p. 3399-3410. https://doi.org/10.1021/pr0603250

Han, X., Xiong, Y., Zhao, C., Xie, S., Li, C., Li, X., Liu, X., Li, K., Zhao, S., Ruan, J. 2019. Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes, vol. 10, no 9, 11 p. https://doi.org/10.3390/genes10090660

Hirano, H. 1982. Varietal differences of leaf protein profiles in mulberry. Phytochemistry, vol. 21, no. 7, p. 1513-1518. https://doi.org/10.1016/S0031-9422(82)85008-5

Hollung, K., Veiseth, E., Jia, X., Færgestad, E. M., Hildrum, K. I. 2007. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Science, vol. 77, no. 1, p. 97-104. https://doi.org/10.1016/j.meatsci.2007.03.018

Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., Hirano, H. 2003. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, vol. 409, no. 2, p. 341-348. https://doi.org/10.1016/S0003-9861(02)00639-2

Kovaleva, M., Kovalev, L., Lisitskaya, K., Eremina, L., Ivanov, A., Krakhmaleva, I., Sadykhov, E., Shishkin, S. 2013. Muscle organs proteomics: multy-level database. FEBS Journal, vol. 280, Special Issue: SI Supplement: 1, p. 488.

Kovalyov, L. I., Kovalyova, M. A., Kovalyov, P. L., Serebryakova, M. V., Moshkovskii, S. A., Shishkin, S. S. 2006. Polymorphism of delta3,5-delta2,4-dienoyl-coenzyme A isomerase (the ECH1 gene product protein) in human striated muscle tissue. Biochemistry (Moscow), vol. 71, no. 4, p. 448-453. https://doi.org/10.1134/S0006297906040146

Lee, P. Y., Saraygord-Afshari, N., Low, T. Y. 2020. The evolution of two-dimensional gel electrophoresis- from proteomics to emerging alternative applications. Journal of Chromatography A, vol. 1615, 41 p. https://doi.org/10.1016/j.chroma.2019.460763

Matsumoto, H., Haniu, H., Kurien, B. T., Komori, N. 2019. Two-Dimensional Gel Electrophoresis by Glass Tube-Based IEF and SDS-PAGE. In Kurien, B., Scofield, R. Electrophoretic Separation of Proteins. New York, NY : Humana Press, p. 107-113. https://doi.org/10.1007/978-1-4939-8793-1_11

Montowska, M., Pospiech, E. 2007. Species identification of meat by electrophoretic methods. Acta Scientiarum Polonorum Technologia Alimentaria, vol. 6, no. 1, p. 5-16.

Montowska, M., Pospiech, E. 2012. Myosin light chain isoforms retain their species-specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics, vol. 12, no. 18, p. 2879-2889. https://doi.org/10.1002/pmic.201200043

Mora, L., Calvo, L., Escudero, E., Toldrá, F. 2016. Differences in pig genotypes influence the generation of peptides in dry-cured ham processing. Food Research International, vol. 86, p. 74-82. https://doi.org/10.1016/j.foodres.2016.04.023

Naveena, B. M., Jagadeesh, D. S., Kamuni, V., Muthukumar, M., Kulkarni, V. V., Kiran, M., Rapole, S. 2017. In-gel and OFFGEL-based proteomic approach for authentication of meat species from minced meat and meat products. Journal of the Science of Food and Agriculture, vol. 98, no. 3, p. 1188-1196. https://doi.org/10.1002/jsfa.8572

Nolan, A. N., Mead, R. J., Maker, G., Bringans, S., Chapman, B., Speers, S. J. 2019. Examination of the temporal variation of peptide content in decomposition fluid under controlled conditions using pigs as human substitutes. Forensic science international, vol. 298, p. 161-168. https://doi.org/10.1016/j.forsciint.2019.02.048

O'Donovan, C., Martin, M. J., Gattiker, A., Gasteiger, E., Bairoch, A., Apweiler, R. 2002. High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Briefings in Bioinformatics, vol. 3, no. 3, p. 275-284. https://doi.org/10.1093/bib/3.3.275

O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, vol. 250, no 10, p. 4007-4021.

Paredi, G., Mori, F., Mozzarelli, A. 2018. Proteomics of Meat Products. In de Almeida, A., Eckersall, D., Miller, I. Proteomics in Domestic Animals: from Farm to Systems Biology. Cham, Switzerland : Springer, 485 p. ISBN 978-3-319-69682-9. https://doi.org/10.1007/978-3-319-69682-9_15

Peng, J., Gygi, S. P. 2001. Proteomics: the move to mixtures. Journal of Mass Spectrometry, vol. 36, no. 10, p. 1083-1091. https://doi.org/10.1002/jms.229

Peng, Y., Chen, X., Zhang, H., Xu, Q., Hacker, T. A., Ge, Y. 2013. Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. Journal of Proteome Research, vol. 12, no. 1, p. 187-198. https://doi.org/10.1021/pr301054n

Persike, D. S., Marques-Carneiro, J. E., de Lima Stein, M. L., Targas Yacubian, E. M., Centeno, R., Canzian, M., de Silva Fernandes, M. J. 2018. Altered Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. Pharmaceuticals, vol. 11, no. 4, 17 p. https://doi.org/10.3390/ph11040095

Ros, A., Faupel, M., Mees, H., van Oostrum, J., Ferrigno, R., Reymond, F., Michel, P., Rossier, J. S., Girault, H. H. 2002. Protein purification by offgel electrophoresis. Proteomics, vol. 2, no. 2, p. 151-156. https://doi.org/10.1002/1615-9861(200202)2:2<151::AID-PROT151>3.0.CO;2-9

Soares, R., Franco, C., Pires, E., Ventosa, M., Palhinhas, R., Koci, K., de Almeida, A. M., Varela Coelho, A. 2012. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. Journal of Proteomics, vol. 75, no. 14, p. 4190-4206. https://doi.org/10.1016/j.jprot.2012.04.009

Suman, S. P., Rentfrow, G., Nair, M. N., Joseph, P. 2014. 2013 EARLY CAREER ACHIEVEMENT AWARD—Proteomics of muscle-and species-specificity in meat color stability. Journal of Animal Science, vol. 92, no. 3, p. 875-882. https://doi.org/10.2527/jas.2013-7277

Vasilevskaya, E. R., Akhremko, A. G. 2019. Proteomic study of pig’s spleen. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 314-317. https://doi.org/10.5219/1093

Zamaratskaia, G., Li, S. 2017. Proteomics in meat science—current status and future perspective. Theory and Practice of Meat Processing, vol. 2, no. 1, p. 18-26. https://doi.org/10.21323/2414-438X-2017-2-1-18-26

Zvereva, E. A., Kovalev, L. I., Ivanov, A. V., Kovaleva, M. A., Zherdev, A. V., Shishkin, S. S., Lisitsyn, A. B., Chernukha, I. M., Dzantiev, B. B. 2015. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, vol. 105, p. 46-52. https://doi.org/10.1016/j.meatsci.2015.03.001

Published

2020-08-28

How to Cite

Akhremko, A., Vasilevskaya, E. R., & Fedulova, L. (2020). Adaptation of two-dimensional electrophoresis for muscle tissue analysis. Potravinarstvo Slovak Journal of Food Sciences, 14, 595–601. https://doi.org/10.5219/1380