Relationship between the activity of guaiacol peroxidase and the content of photosynthetic pigments in tea leaves

Authors

  • Nataliia Platonova Russian Institute of Floriculture and Subtropical Crops, Laboratory of Plants Biochemistry and Physiology, Yana Fabritsiusa st., 2/28, 354002, Sochi, Russia, Tel.: +7(918)3057387
  • Oksana Belous Russian Institute of Floriculture and Subtropical Crops, Laboratory of Plants Biochemistry and Physiology, Yana Fabritsiusa st., 2/28, 354002, Sochi, Russia, Tel.: +7(918)1099115 https://orcid.org/0000-0001-5613-7215

DOI:

https://doi.org/10.5219/1401

Keywords:

tea, chlorophyll, carotenoid, guaiacol peroxidase, air temperature, precipitation, correlation, stability

Abstract

The dynamics of guaiacol peroxidase and photosynthetic pigments in 3-leaf sprouts (flushes) of tea plants were studied. The presence of declines and peaks in the activity of the enzyme associated with the meteorological conditions of each month was noted. It is shown that there is a direct relationship between the increase in enzyme activity and hydrothermal factors. The most significant correlation was found between the activity of GPO in a 3-leaf tea flush and the amount of precipitation (r = 0.86). The highest activity of guaiacol peroxidase during the entire vegetation period is distinguished by the Sochi variety and form 582. The lowest activity was observed in forms 3823 and 2264, which indicates a low intensity of redox reactions in these plants in stressful situations. Determining the dynamics of the pigment complex revealed its dependence on hydrothermal factors. Studies have shown that precipitation is a significant factor affecting the pigment complex of tea plants. It was found that the largest amount of green pigments is synthesized by leaves at the beginning of active vegetation (May). The participation of the pigment apparatus in the adaptation of the tea plant is directly related to carotenoids, the increase in the number of carotenoids coincides with the period of drought. In the content of photosynthetic pigments and the activity of guaiacol peroxidase manifest genotypic features. The revealed patterns are common to all tea plants.

Downloads

Download data is not yet available.

References

Belous, O., Klemeshova, K., Malyarovskaya, V. 2018. Photosynthetic pigments of subtropical plants. In García Cañedo,J. C., López-Lizárraga, G. L. Photosynthesis - From its evolution to future improvements in photosynthetic efficiency using nanomaterials. London, UK : IntechOpen, 113 p. ISBN 978-1-78923-786-3. https://doi.org/10.5772/intechopen.75193

Belous, O., Platonova, N. 2018a. Physiological foundations of sustainability Camellia sinensis (L.) O. Kuntze and Corylus pontica C. Koch. in the conditions of humid subtropics of Russia. American Journal of Plant Sciences, vol. 9, no. 9, p. 1771-1780. https://doi.org/10.4236/ajps.2018.99129

Belous, O., Platonova, N. 2018b. Content of antioxidants in tea (Camellia sinensis (L.) Kuntze) grown in the subtropics of Russia. In Book of Abstracts “Biotechnology and Quality of Raw Materials and Foodstuffs“. Nitra, Slovak Republic, 24 p. ISBN 978-80-552-1874-8

Belous, O., Platonova, N. 2018c. Изменение ферментативной активности растений чая под влиянием сресс-факторов влажных субтропиков россии (Change of enzyme activity of tea plants under the influence of stress factors of the Russia humid subtropics). In: Mechanisms of resistance of plants and microorganisms to adverse environmental conditions. Irkutsk: Of the society of plant physiologists of Russia, p. 127-129. In Russian. https://doi.org/10.31255/978-5-94797-319-8-127-129

Belous, O., Platonova, N. 2019. Механизмы устойчивости чайных растений к зимним стрессорам (Mechanisms of tea plants resistance to winter stressors). Natural and Technical Sciences, no. 10, p. 41-44. In Russian. Available at: https://www.elibrary.ru/item.asp?id=41305841

Beneragama, C. K., Goto, K. 2010. Chlorophyll a:b Ratio Increases Under Low-light in ‘Shade-tolerant’ Euglena gracilis. Tropical Agricultural Research, vol. 22, no. 1, p. 12-25. https://doi.org/10.4038/tar.v22i1.2666

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., Kalayci, O. 2012. Oxidative Stress and Antioxidant Defense. World Allergy Organization Journal, vol. 5, no. 1, p. 9-19 , https://doi.org/10.1097/WOX.0b013e3182439613

Biswal, A. K., Pattanayak, G. K., Pandey, S. S., Leelavathi, S., Reddy, V. S., Govindjee, Tripathy, B. C. 2012. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco. Plant Physiology, vol. 159, no. 1, p. 433-449. https://doi.org/10.1104/pp.112.195859

Bukhov, N. G, Heber, U., Wiese, C., Shuvalov, V. A. 2001. Energy dissipation in photosynthesis: Does the quenching of chlorophyll fluorescence originate from antenna compexes of photosystem II or from the reaction center? Planta, vol. 212, p. 749-758. https://doi.org/10.1007/s004250000486

Eremchenko, O. Z., Kusakina, M. G., Luzina, E. V. 2014. Содержание пигментов в растениях Lepidium sativum в условиях хлоридного засоления и щелочности натрия (Content of pigments in plants of Lepidium sativum under conditions of sodium chloride salinity and alkalinity). Bulletin of PSU. Biology, no. 1, p. 30-35. In Russian.

Fedotova, Yu. K. 2009. О содержании основных пигментов фотосинтетического аппарата Geranium sanguineum флора Центрального Кавказа (On the content of the main pigments of the photosynthetic apparatus in Geranium sanguineum flora of the Central Caucasus). Bulletin of the MSRU. Series: natural sciences, no. 1, p. 81-84. In Russian.

Foyer, C. H., Noctor, G. 2000. Oxygen Processing in Photosynthesis: Regulation and Signaling. New Phytologist, vol. 146, no, 3, p. 359-388. https://doi.org/10.1046/j.1469-8137.2000.00667.x

Chen, G. X., Asada, K. 1989. Ascorbate Peroxidase in Tea Leaves: Occurrence of Two Isozymes and the Differences in Their Enzymatic and Molecular Properties. Plant and Cell Physiology, vol. 30, no. 7, p. 987-998. https://doi.org/10.1093/oxfordjournals.pcp.a077844

Kapchina-Toteva, V., Slavov, S., Batchvarova, R., Krantev, A., Stefanov, D., Uzunova, A. 2004. Stress markers in chlorsulphuron tolerant transgenic tobacco plants. Bulgarian Journal of Plant Physiology, vol. 30, no. 1-2, p. 89-103.

Kareska, S. 2009. Factors affecting hydrogen peroxidase activity. ESSAI, vol. 7, p. 82-85. Available at: https://dc.cod.edu/cgi/viewcontent.cgi?article=1122&context=essai

Kasote, D. M., Katyare, S. S., Hegde, M. V., Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, vol. 11, no. 8, p. 982-991. https://doi.org/10.7150/ijbs.12096

Kaur, G., Asthir, B. 2017. Molecular responses to drought stress in plants. Biologia Plantarium, vol. 61, no. 2, p. 201-209. https://doi.org/10.1007/s10535-016-0700-9

Keshari, A. K., Verma, A. K., Kumar, T., Srivastava, R. 2015. Oxidative Stress: A Review. The International Journal Of Science & Technoledge, vol. 3, no. 7, p. 155-162. Available at: http://www.internationaljournalcorner.com/index.php/theijst/article/view/124523/85585

Krasensky, J., Jonak, C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, vol. 63, no. 4, p. 1593-1608. https://doi.org/10.1093/jxb/err460

Ladygin, V. G., Shirshikova, G. N. 2006. Современные представления о функциональной роли каротиноидов в хлоропластах эукариот (Modern concepts of the functional role of carotenoids in eukaryotic chloroplasts). Journal of General biology, vol. 67, no. 3, p. 163-189. In Russian.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, vol. 7, no. 9, p. 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9

Mulgund, A., Doshi, S., Agarwal, A. 2015. The role of oxidative stress in endometriosis. In Watson, R. R. Handbook of Fertility. Nutrition, Diet, Lifestyle and Reproductive Health. New York, USA: Elsevier, p. 273-281. https://doi.org/10.1016/B978-0-12-800872-0.00025-1

Nikolaeva, M. K., Mayevskaya, S. N., Shugaev, A. G., Bukhov, N. G. 2010. Influence of drought on the content of chlorophyll and activity of antioxidant system enzymes in the leaves of three wheat varieties that differ in productivity. Russian Journal of Plant Physiology, vol. 57, no. 1, p. 87-95. https://doi.org/10.1134/S1021443710010127

Ognik, K., Cholewińska, E., Sembratowicz, I., Grela, E., Czech, A. 2016. The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World's Poultry Science Journal, vol. 72, no. 2, p. 291-298. https://doi.org/10.1017/S0043933915002779

Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., Dwivedi, U. N. 2017. A Comprehensive Review on Function and Application of Plant Peroxidases. Biochemistry and Analytical Biochemistry, vol. 6, no. 1, 16 p. https://doi.org/10.4172/2161-1009.1000308

Platonova, N. B., Belous, O. G. 2019. Dynamics of peroxidase enzymatic activity as an element of antioxidant defense in tea plant Camellia sinensis (L.) Kuntze. Subtropical and Ornamental Horticulture, vol. 68, p. 197-201. https://doi.org/10.31360/2225-3068-2019-68-197-201

Potoroko, I. U., Kalinina, I. V., Naumenko, N. V., Fatkullin, R. I., Shaik, S., Sonawane, S. H., Ivanova, D., Kiselova-Kaneva, Y., Tolstykh, O., Paymulina, A. V. 2017. Possibilities of regulating antioxidant activity of medicinal plant extracts. Human Sport Medicine, vol. 17, no. 4, p. 77-90. https://doi.org/10.14529/hsm170409

Rogozhin, V. V. 2004. Пероксидаза как компонент антиоксидантной системы живых организмов (Peroxidase as a component of the antioxidant system of living organisms). Saint Petersburg, Russia : GIORD, 240 p. In Russian. ISBN 5-901065-80-8.

Shlyk, A. A. 1971. Определение хлорофиллов и каротиноидов в экстрактах зеленых листьев. Биохимические методы в физиологии растений (Determination of chlorophylls and carotenoids in green leaf extracts. Biochemical methods in plant physiology). Moscow, Russia : Nauka, p. 154-157. In Russian.

Skhalyakhov, A. A., Siyukhov, H. R., Tazova, Z. T., Lunina, L. V., Mugu, I. G. 2019. Phenolic compounds and antioxidant potential of wild-growing plant materials of the North Caucasus region. International Journal of Engineering and Advanced Technology, vol. 9, no. 2, p. 5062-5071. https://doi.org/10.35940/ijeat.B4046.129219

Steinman, A. D., Lamberti, G. A., Leavitt, P. R., Uzarski, D. G. 2017. Biomass and Pigments of Benthic Algae. In Hauer, F. R., Lamberti, G. A. Methods in Stream Ecology. Volume 1: Ecosystem Structure, 3rd Edition. New York, USA : Elsevier, p. 223-241. https://doi.org/10.1016/B978-0-12-416558-8.00012-3

Thongsook, T., Barrett, D. M. 2005. Heat inactivation and reactivation of broccoli peroxidase. Journal of Agriculture and Food Chemistry, vol. 53, no. 8, p. 3215-3222. https://doi.org/10.1021/jf0481610

Vorobyov, V. N., Nevmerzhitskaya, Yu. Yu., Khusnutdinova, L. Z., Yakushenkova, T. P. 2013. Практикум по физиологии растений: учебно-методическое пособие (Practicum on plant physiology: educational and methodological guide). Kazan, Russia : Kazan University, 80 p. In Russian.

Published

2020-10-28

How to Cite

Platonova, N., & Belous, O. (2020). Relationship between the activity of guaiacol peroxidase and the content of photosynthetic pigments in tea leaves. Potravinarstvo Slovak Journal of Food Sciences, 14, 1020–1026. https://doi.org/10.5219/1401

Most read articles by the same author(s)