Essential oils and their application in a food model

Authors

  • Lucia Galovičová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tulipánová 7, 949 76, Nitra, Slovakia, +421 907 260 116 https://orcid.org/0000-0002-1203-4115
  • Veronika Valková Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tulipánová 7, 949 76, Nitra, Slovakia, AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, +421 911 633 386
  • Jana Štefániková AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, +421 37 641 4911
  • Miroslava Kačániová Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Fruit Science, Viticulture and Enology, Tulipánová 7, 949 76, Nitra, Slovakia, Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland, +421 905 499 166

DOI:

https://doi.org/10.5219/1490

Keywords:

Stenotrophomonas maltophilia, Canarium luzonicum, Melaleuca leucadenron, Amyris balsamifera, essential oil, food model

Abstract

The aim of the study was to investigate the chemical composition, antioxidant, and antimicrobial activity of essential oils (Canarium luzonicum CLEO, Melaleuca leucadenron MLEO, Amyris balsamifera ABEO). There was Gas chromatographic-mass spectrometric analysis used for the characteristic of the semiquantitative composition of the essential oils. The DPPH method was used to determine the antioxidant activity. Minimum inhibitory concentrations (MIC) of essential oils against Stenotrophomonas maltophilia were analyzed in a 96-well plate. The broth microdilution method was used for the minimal inhibitory concentration. A gas-phase antimicrobial assay was used to determine inhibitory concentrations in a food model. CLEO proved to be the best with the lowest MIC 50 and 90 of 6.67 μL.mL-1 respectively 6.81 μL.mL-1 and antioxidant activity of 33.43% among the tested essential oils. The main volatile compounds CLEO were limonene 36.38%, elemol 16.65%, α-fellandren 12.18% and elemicin 9.59%. It showed inhibition of S. maltophilia growth in the food model at the lowest concentrations among the essential oils.

Downloads

Download data is not yet available.

References

Alves, A., Mantovani, A. L. L., Martins, M. H. G., Abrao, F., Lucarini, R., Crotti, A. E. M., Martins, C. H. G. 2015. Antimycobacterial Activity of Some Commercially Available Plant-Derived Essential Oils. Chemistry of Natural Compounds, vol. 51, no. 2, p. 353-355. https://doi.org/10.1007/s10600-015-1281-0

An, S., Berg, G. 2018. Stenotrophomonas maltophilia. Trends in Microbiology, vol. 26, no. 7, p. 637-638 https://doi.org/10.1016/j.tim.2018.04.006

Angelini, P., Bricchi, E., Zeppilli, N., Dimitriu, L., Rondolini, M., Angeles, G., Covino, S., Venanzoni, R. 2019. Screening of the antifungal activity of essential oils against human and plant pathogenic filamentous fungi. Flora Mediterranea, vol. 29, no. 26, p. 5-12. https://doi.org/10.7320/FlMedit29.005

Barwick, M., Schans, A., Claudy, J. 2004. Tropical and Subtropical Trees - A Worldwide Encyclopaedic Guide. LONDON, ENGLAND : Thames & Hudson, 319-323 p. ISBN: 0-500-51181-0.

Bautista-Silva, J. P., Seibert, J. B., Amparo, T. R., Rodrigues, I. V., Teixeira, L. F. M., Souza, G. H. B., Santos, O. D. H. 2020. Melaleuca leucadendra Essential Oil Promotes Loss of Cell Membrane and Wall Integrity and Inhibits Bacterial Growth: An In Silico and In Vitro Approach. Current Microbiology, vol. 77, no. 1, p. 2181-2191. https://doi.org/10.1007/s00284-020-02024-0

Cleber, J. S., Luiz, C. A. B., Celia, R. A. M., Antonio, L. P., Franz, M. D. I. 2007. Comparative Study of the Essential Oils of Seven Melaleuca Species Grown in Brazil. Journal Flavor Fragr, vol. 22, no. 1, p. 474-478. https://doi.org/10.1002/ffj.1823

Dahiya, P., Manglik, A. 2013. Evaluation of Antibacterial, Antifungal and Antioxidant Potential of Essential Oil from Amyris balsamifera Against Multi Drug Resistant Clinical Isolates Amity Institute of Biotechnology. Asian Journal of Pharmaceutical and Clinica Research. vol. 6, no. 5, p. 57-60.

Dias D. A., Urban, S., Roessner, U. 2012. A Historical Overview of Natural Products in Drug Discovery. Metabolites Journal, vol. 2, no. 2, p 303-336. https://doi.org/10.3390/metabo2020303

Fall, R., Ngom, S., Sall, D., Sembène, M., Samb, A. 2017. Chemical characterization of essential oil from the leaves of Callistemon viminalis (D.R.) and Melaleuca leucadendron (Linn.). Asian Pacific Journal of Tropical Biomedicine, vol. 7, no. 4, p. 347-351. https://doi.org/10.1016/j.apjtb.2017.01.004

Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., Iqbal, M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infectious Diseases, vol. 15, no. 4, p. 305-311. https://doi.org/10.1016/S1413-8670(11)70197-0

Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., Tvrdá, E. 2020. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods, vol. 9, no. 3, p. 282. https://doi.org/10.3390/foods9030282

Khan, A. I., Abourashed, E. A. 2009. Encyclopaedia of common natural ingredients used in foods drugs and cosmetics. NEW YORK: John Wiley & Sons Inc, 658-724 p. ISBN: 978-0-471-46743-4.

Lieu, M. D., Ngo, N. H., Lieu, T. L., Nguyen, K. T., Dang, K. T. 2018. The efficacy of combined application of edible coatings and essential oil in mango preservation. Vietnam Journal of Science and Technology, vol. 56, no. 4, p. 458-467. https://doi.org/10.15625/2525-2518/56/4/10794

Lin, CH., Yu, W., Wu, S., Yih, K. 2009. DPPH Free-Radical Scavenging Activity, Total Phenolic Contents and Chemical Composition Analysis of Forty-Two Kinds of Essential Oils. Journal of Food and Drug Analysis, vol. 17, no. 5, p. 386-395. https://doi.org/10.38212/2224-6614.2594

Malik, S. 2019. Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production. CHAM, SWITZERLAND: Springer, 111-112 p. ISBN: 978-3-030-16546-8.

Murthy, K. R., Chandrasekhara, R. M., Rani, S. S., Pullaiah, T. 2016. Bioactive principles and biological properties of essential oils of Burseraceae: A review. Journal of Pharmacognosy and Phytochemistry, vol. 5, no. 2, p. 247-258.

Nikolic, M., Smiljkovic, M., Markovic, T., Cirica, A., Glamoclija, J., Markovic, D., Sokovic, M. 2016. Sensitivity of clinical isolates of Candida to essential oils from Burseraceae family. Experimental and clinical sciences journal, vol. 15, no. 1, p. 280-289. http://doi.org/10.17179/excli2014-621

Nikšić, H. A., Durić, K., Omeragić, E., Nikšić, H. E., Muratović, S., Bečić, F. 2018. Chemical characterization, antimicrobial and antioxidant properties of Mentha spicata L. (Lamiaceae) essential oil. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, vol. 50, no. 1, p. 43-48.

Orchard, A., SandasI, M., Kamatou, G., Viljoen, A., Vuuren, S. 2017. The in vitro Antimicrobial Activity and Chemometric Modelling of 59 Commercial Essential Oils against Pathogens of Dermatological Relevance. Chemistry and Biodiversity, vol. 14, no. 1, p. 57-65. https://doi.org/10.1002/cbdv.201600218

Park, H. M., Park, I. K. 2012. Larvicidal activity of Amyris balsamifera, Daucus carota and Pogostemon cablin essential oils and their components against Culex pipiens pallens. Journal of Asia-Pacific Entomology, vol. 15, no. 4, p. 631-634. https://doi.org/10.1016/j.aspen.2012.07.006

Pino, J. A., Cuevas-Glory, L., Sauri-Duch, E. 2010. Volatile Constituents of Peel and Leaf Oils of Cajel Orange (Citrus sinensis L. Osbeck). Journal of Essential Oil Bearing Plants, vol. 10, no. 6, p. 742-746. https://doi.org/10.1080/0972060X.2010.10643889

Pintas, S. K., Quave, C. L. 2019. A Review of Botanicals Exhibiting Antifungal Activity Against Malassezia spp. Implicated in Common Skin Conditions. Current Dermatology Reports, vol. 8, no. 1, p. 279-296. https://doi.org/10.1007/s13671-019-00274-1

Pujiarti, R., Ohtani, Y., Ichiura, H. 2011. Physicochemical properties and chemical compositions of Melaleuca leucadendron leaf oils taken from the plantations in Java, Indonesia. Journal of Wood Science, vol. 57, no. 1, p. 446-451. https://doi.org/10.1007/s10086-011-1183-0

Rohmer, M., Schwartz, A. C., Anton, R. 2012. Sesquiterpenes from essential oil of Amyris balsamifera. Phytochemistry, vol. 16, no. 6, p. 773-774. https://doi.org/10.1016/S0031-9422(00)89256-0

Santiago, M. B., Moraes, T. S., Massuco, J. E., Silva, L. O., Lucarini, R. Silva, D. F., Vieira, T. M., Crotti, A. E., Martins, C. H. 2018. In vitro evaluation of essential oils for potential antibacterial effects against Xylella fastidiosa. Journal of Phytopathology, vol. 166, no. 11-12, p. 790-798. https://doi.org/10.1111/jph.12762

Sharifi‐Rad, J., Salehi, B., Varoni, E. M., Sharopov, F., Yousaf, Z., Ayatollahi, S. A., Kobarfard, F., Sharifi‐Rad, M., Afdjei, M. H., Irit, M. 2017. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytoterapy Research, vol. 31, no. 10, p. 1475-1494. https://doi.org/10.1002/ptr.5880

Siddique, S., Parveen, Z., Bareena, F., Mazharc, S. 2020. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arabian Journal of Chemistry, vol. 13, no. 1, p. 67-74. https://doi.org/10.1016/j.arabjc.2017.01.018

Silva, E. R., Oliveira, D. R., Leitão, S. G., Assis, I. M., Veiga, V. F., Lourenço, M. C., Alviano, D. S., Alviano, C. S., Bizzo, H. R. 2012. Essential oils of Protium spp. samples from Amazonian popular markets: chemical composition, physicochemical parameters and antimicrobial activity. Journal of Essential Oil Research, vol. 25, no. 3, p. 171-178. https://doi.org/10.1080/10412905.2012.751055

Swift, K. A. D. 2002. Advances in flavours and fragrances, from the sensation to the synthesis. CAMBRIDGE, ENGLAND: Royal Society of Chemistry, 95 p. ISBN 0-85404-821-9.

Tia, E. V., Lozano, P., Menut, C., Lozano, Y. F., Martin, T., Niamké, S., Adima, A. A. 2013. Potentiality of essential oils for control of the whitefly Bemisia tabaci Genn., a greenhouse pest. Phytothérapie, vol. 11, no. 1, p. 31-38. https://doi.org/10.1007/s10298-012-0736-8

Uniyal, A., Tikara, S. N., Agrawalc, O. P., Sukumarana, D., Veer, V. 2016. Quantitative evaluation of essential oils for the identification of chemical constituents by gas chromatography/mass spectrometry. Archives of Agriculture and Environmental Science, vol. 1, no. 1, p. 22-37.

Xiao, S., Cui, P., Shi, W., Zhang, Y. 2020. Identification of essential oils with activity against stationary phase Staphylococcus aureus. Complementary Medicine and Therapies, vol. 20, no. 9, p. 2-10. https://doi.org/10.1186/s12906-020-02898-4

Yun, M. S., Yeon, B. R., Cho, H. M., Choi, J. S., Kim, S. 2012. Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera). Weed & Turfgrass Science, vol. 1, no. 4, p. 44-49. https://doi.org/10.5660/WTS.2012.1.4.044

Zhang, X. L., Xu, W. F., Chen, G., Wang, H. F., Pei, Y. H. 2017. Two new phenolic glycosides isolated from the fruits of Citrus aurantium. Chinese Journal of Natural Medicines, vol. 15, no. 1, p. 41-44. https://doi.org/10.1016/S1875-5364(17)30006-7

Published

2020-11-28

How to Cite

Galovičová, L., Valková, V., Štefániková, J., & Kačániová, M. (2020). Essential oils and their application in a food model. Potravinarstvo Slovak Journal of Food Sciences, 14, 1088–1096. https://doi.org/10.5219/1490

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>