Evaluation of the basic saccharides content in tomatoes

Authors

  • Andrea Mendelova Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, A. Hlinku 2, 949 76 Nitra, Slovak Republic, +421 37 641 4777 https://orcid.org/0000-0002-0017-0187
  • Ľubomír Mendel National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany, Slovak Republic https://orcid.org/0000-0001-7610-7064
  • Miriam Solgajová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, A. Hlinku 2, 949 76 Nitra, Slovak Republic, +421 37 641 4311 https://orcid.org/0000-0003-3548-5776
  • Ján Mareček Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, A. Hlinku 2, 949 76 Nitra, Slovak Republic, +421 37 641 4379 https://orcid.org/0000-0002-7379-5460

DOI:

https://doi.org/10.5219/1543

Keywords:

tomato, saccharides, glucose, fructose, sucrose

Abstract

Saccharides are the basic dry matter components of all fruits and vegetables. The dominant tomatoes saccharides are fructose and glucose, minor ones are sucrose but also arabinose, xylose, and galactose. The objective of this paper is to analyze carbohydrates such as glucose, fructose and sucrose in the selected tomatoes varieties intended for the direct consumption and industrial processing. We used 14 varieties and 3 newly selected tomatoes varieties. The glucose content in the studied varieties was in the range of 4.87 – 15.9 g.kg-1, the fructose content was 11.1 – 22.27 g.kg-1 and sucrose content was
0.07 – 1.73 g.kg-1. The highest fructose and sucrose content was detected in the Tomanova variety, the highest sucrose content was found out in the Bovita variety. When comparing the glucose content it was found out that the higher content on average was achieved in the varieties intended for the industrial processing (10.10 g.kg-1) than in the varieties for the direct consumption (7.96 g.kg-1). The varieties intended for industrial processing were generally characterized by higher glucose and fructose content than the varieties intended for the direct consumption. When comparing the fructose content, we found a higher average content in the varieties intended for industrial processing (15.70 g.kg-1) than in the varieties for the direct consumption (14.40 g.kg-1). In most of the studied varieties sucrose was present in low content (<1.0 g.kg-1), only in the Tomanova variety sucrose content represented more than 1 g.kg-1.

Downloads

Download data is not yet available.

References

Anthon, G. E., Le Strangeb, M., Barretta, D. M. 2011. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. In Journal Science Food Agriculture, vol. 91, no. 7, p. 1175-1181. https://doi.org/10.1002/jsfa.4312

Ayvaz, H., Sierra-Cadavid, A., Aykas, D. P., Mulqueeney, B., Sullivan, S., Rodriguez-Saona. L. E. 2016. Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control, vol. 66, p. 79-86. http://doi.org/10.1016/j.foodcont.2016.01.031

Baldwin, E. A., Goodner, K., Plotto, A. 2008. Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science, vol. 73, no. 6, p. 294-307.

https://doi.org/10.1111/j.1750-3841.2008.00825.x

Baldwin, E. A., Plotto, A., Narciso, J., Bai, J. 2011. Effect of 1-methylcyclopropene on tomato flavor components, shelf life and decay as influenced by harvest maturity and storage temperature. Journal of the Science of Food and Agriculture, vol. 91, no. 6, p. 969-980. https://doi.org/10.1002/jsfa.4281

Bastias, A., Lopez-Climent, M., Valcarcel, M, Rosello, S., Gomez-Cadenas, A., Casaretto, J. A. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiologia Plantarum, vol. 141, no. 3, p. 215-226.

https://doi.org/10.1111/j.1399-3054.2010.01435.x

Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolaï, B. M., Lammertyn, J. 2006. The electronic tongue and ATR-FTIR for rapid detection of sugars and acids in tomatoes. Sensors and Actuators B: Chemical, vol. 116, no. 1-2, p. 107-115. https://doi.org/10.1016/j.snb.2005.11.084

Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E, Zanor, M. I., Nunes-Nesi, A., Nikiforova, V., Centero, D., Ratzka, A., Pauly, M., Sweetlove, L. J., Fernie, A. R. 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, vol. 142, no. 4, p. 1380-1396. https://doi.org/10.1104/pp.106.088534

De Castro Vilas Boas, A. A., Page, D., Giovinazzo, R., Bertin, N., Fanciullino, A. L. 2017. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree. Frontiers in Plant Science, vol. 8, p. 1725. https://doi.org/10.3389/fpls.2017.01725

Domínguez, I., Lafuente, M. T., Hernández-Muñoz, P., Gavara, R. 2016. Influence of modified atmosphere and ethylene levels on quality attributes of fresh tomatoes (Lycopersicon esculentum Mill.). Food Chemistry, vol. 209, no. 15, p. 211-219. http://doi.org/10.1016/j.foodchem.2016.04.049

Duma, M., Alsina, I., Dubova, L., Erdberga, I. 2017. Quality of tomatoes during storage. FoodBalt 2017. University of Agriculture : Latvia. p. 130-133. https://doi.org/10.22616/foodbalt.2017.030

Fulton, T. M., Bucheli, P., Voirol, E., López, J., Pétiard, V., Tanksley, S. D. 2002. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica, vol. 127, no. 2, p. 163-177. https://doi.org/10.1023/A:1020209930031

Goff, S. A., Klee, H. J. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science,vol. 311, p. 815-819. https://doi.org/10.1126/science.1112614

Hernández-Suárez, M. H., Rodríguez, E. R., Romero, C. D. 2008. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Europen Food Research and Technology, vol. 226, no. 3, p. 423-435. https://doi.org/10.1007/s00217-006-0553-0.

Ilahy, R., Siddiqui, M. W., Tlili, I., Piro, G, Lenucci, M. S. - Hdider, Ch. 2016. Functional Quality and Colour Attributes of Two High-Lycopene Tomato Breeding Lines Grown under Greenhouse Conditions. Turkish Journal of Agriculture - Food Science and Technology, vol. 4, no. 5, p. 365-373. https://doi.org/10.24925/turjaf.v4i5.365-373.620

Kader, A. A. 2008. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, vol. 88, no. 44, p. 1863-1868. https://doi.org/10.1002/jsfa.3293

Kanayama, Y., Kogawa, M., Yamaguchi, M., Kanahama, K. 2005. Fructose content and the activity of fructose-related enzymes in the fruit of eating-quality peach cultivars and native-type peach cultivars. Journal of the Japanese Society for Horticultural Science, vol.7, no 6, p. 431-436. https://doi.org/10.2503/jjshs.74.431

Kelebek, H., Selli, S., Kadiroglu, P., Kola, O., Kesen, S., Uçar, B., Çetiner, B. 2017. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chemistry, vol. 220, p. 31-41. http://doi.org/10.1016/j.foodchem.2016.09.190

Majidi, H., Minaei, S., Almasi, M., Mostofi, Y. 2011. Total Soluble Solids, Titratable Acidity and Repining Index of Tomato Various Storage Conditions. Australian Journal of Basic and Applied Sciences, vol. 5, no. 12, p. 1723-1726.

Osvald, J., Petrovic, N., Demsar, J. 2001. Sugar and organic acid content of tomato fruits (Lycopersicon lycopersicum Mill.) grown on aeroponics at different plant density. Acta Alimentaria, vol. 30, p. 53-61. https://doi.org/10.1556/aalim.30.2001.1.6

Patané, C., Cosentino, S. L. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management, vol. 97, no. 1, p. 131-138. https://doi.org/10.1016/j.agwat.2009.08.021

Patané, C., Pellegrino, A., Saita, A., Siracusa, L., Ruberto, G., Barbagallo, R. 2017. Mediterranean long storage tomato as a source of novel products for the agrifood industry: Nutritional and technological traits. LWT - Food Science and Technology, vol. 85, p. 445-448. http://doi.org/10.1016/j.lwt.2016.12.011

Pinela, J., Barros, L., Carvalho, A. M., Ferreira, I. C. F. R. 2012. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, vol. 50, no. 3-4, p. 829-834. https://doi.org/10.1016/j.fct.2011.11.045

Ponce-Valadez, M., Escalona-Buendía, H. B., Villa-Hernández, J. M., Díaz De León-Sánchez, F., Rivera-Cabrera, F., Alia-Tejacal, I., Pérez-Flores, L. J. 2016. Effect of refrigerated storage on tomato (Solanum lycopersicum) fruit flavor: A biochemical and sensory analysis. Postharvest Biology and Technology, vol. 111, p. 6-14. http://doi.org/10.1016/j.postharvbio.2015.07.010

Radzevičius, A., Viškelis, J., Karklelienė, R., Uškevičienė, D., Viškelis, P. 2016. Determination of tomato quality attributes using near infrared spectroscopy and reference analysis. Zemdirbyste-Agriculture, vol. 103, no. 1, p. 91-98. https://doi.org/10.13080/z-a.2016.103.012

Ruggieri, V., Francese, G., Sacco, A., D'Alessandro, A., Rigano, M. M., Parisi, M., Milone, M., Cardi, T., Mennella, G., Barone, A. 2014. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology, no 14, p. 337.

https://doi.org/10.1186/s12870-014-0337-9

Sanz, M. L., Martínez-Castro, I. 2007. Recent developments in sample preparation for chromatographic analysis of carbohydrates. Journal of Chromatography A, vol. 1153, no. 1-2, p. 74-89. https://doi.org/10.1016/j.chroma.2007.01.028

Schauer, N., Zamir, D., Fernie, A. R. 2005. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum Lycopersicum Complex. Journal of Experimental Botany, vol. 56, no. 410, p. 297-307. https://doi.org/10.1093/jxb/eri057

Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z, Fernie, A., Cause, M. 2014. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, vol. 165, p. 1120-1132. https://doi.org/10.1104/pp.114.241521

Sun, Y. D., Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., Qin, L. 2012. Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genetics and Molecular Research, vol. 11, no. 4, p. 3696-3710 http://doi.org/10.4238/2012

Thakur, B. R., Singh, R. K., Nelson, P. E. 1996. Quality attributes of processed tomato products: A review. Food Reviews International, vol. 12, no. 3, p. 375-401. https://doi.org/10.1080/87559129609541085

Tijskens, L. M. M., Schouten, R. E. 2009. Modeling quality attributes and quality properties. In Florkowski, W., Shewfelt, R., Prussia, S., Banks, N., Prussia, S., Shewfelt, R., Brueckner, B. Postharvest Handling: A Systems Approach. 2nd ed. Cambridge, USA : Academic Press, 640 p. ISBN 978-0-12-374112-7.

Wang, L., Baldwin, E. A., Bai, J. 2016. Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations. Food and Bioprocess Technology, vol. 9, no. 2, p. 203-216.

https://doi.org/10.1007/s11947-015-1638-1.

Wilkerson, E. D., Anthon, G. E., Barrett, D. M., Sayajon, G. F. G., Santos, A. M., Rodriguez-Saona, L. E. 2013. Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. Journal of Agricultural and Food Chemistry, vol. 61, no. 9, p. 2088-2095. https://doi.org/10.1021/jf304968f

Zhang, Y., Li, P., Cheng, L. 2010. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chemistry, vol. 123, p. 1013-1018. https://doi.org/10.1016/j.foodchem.2010.05.053

Zhang, J., Zhao, J., Liang, Y., Zou, Z. 2016. Genome-wide association-mapping for fruit quality traits in tomato. Euphytica, vol. 207, p. 439–451. https://doi.org/10.1007/s10681-015-1567-0

Zhao, J., Xu, Y., Ding, Q., Huang, X., Zhang, Y., Zou, Z., Li, M., Cui, L., Zhang, J. 2016. Association mapping of main tomato fruit sugars and organic acids. Frontiers in Plant Science, vol. 7, p. 1286. https://doi.org/10.3389/fpls.2016.01286

Published

2021-06-28

How to Cite

Mendelova, A., Mendel, Ľubomír ., Solgajová, M., & Mareček, J. (2021). Evaluation of the basic saccharides content in tomatoes. Potravinarstvo Slovak Journal of Food Sciences, 15, 592–598. https://doi.org/10.5219/1543

Most read articles by the same author(s)

1 2 > >>