The chemical composition of two kinds of grape juice with medicinal plant addition

Authors

  • Jakub Mankovecký Slovak University of Agriculture, Faculty of Horticulture and Landscape Engeeniering, Institute of Horticulture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376415803 https://orcid.org/0000-0003-0314-5494
  • Lucia Galovičová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engeeniering, Institute of Horticulture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421376415803 https://orcid.org/0000-0002-1203-4115
  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engeeniering, Institute of Horticulture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +42137641715, Rzeszow University, Institute of Food Technology and Nutrition, Department of Bioenergetics, Food Analysis and Microbiology, Cwiklinskiej 1, Rzeszow 35-601 Poland https://orcid.org/0000-0002-4460-0222

DOI:

https://doi.org/10.5219/1692

Keywords:

grape juice, Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., Mentha aquatica var. citrate, chemical parameters

Abstract

The safety of plant-based food with an herbal origin is a priority for producers and final consumers these days. The interest in the high biological value of the final food products enriched with herbal ingredients is rising. We focused on the study of physico-chemical composition and antioxidant activity of two kinds of grape juice with medicinal plant addition in our study. We used 2 varieties of grapes - Welschriesling and Cabernet Sauvignon, six species of medicinal plants - Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., and Mentha aquatica var. citrata in our experiment. There were14 samples prepared, two of them were control samples and 12 samples were treated with medicinal plants. We tested each of the selected parameters triplicate with an interval of one week. We evaluated the results statistically in 4 levels of significance p <0,01, p <0,001, p <0,0001 and p <0,00001. The content of fructose, glucose, dry matter, density, malic acid, pH, potential alcohol, total acids, and total sugars in the treated samples was significantly lower compared to the control sample, which was probably due to the degree of dilution of grape juice with extracts gained from medicinal plants. The antioxidant effect was demonstrably higher in the samples enriched with medicinal plants than in the control samples. The highest antioxidant effect was measured in the second test in the samples with the addition of Thymus serpyllum (80.93 % - white grape must, 82.33 % - blue grape must), Calendula officinalis L. (79.29 % - white grape must, 80.49 % - blue grape must) and Ginkgo biloba (79.10 % - white grape must, 83.3 % - blue grape must). Generally, we found out that the selected medicinal plants increase the biological quality of grape juice.

Downloads

Download data is not yet available.

References

Athukorala, Y., Lee, K.-W., Song, C., Ahn, C.-B., Shin, T.-S., Cha, Y.-J., Shahidi, F., Jeon, Y.-J. 2003. Potential antioxidant activity of marine red alga grateloupia filicina extracts. Journal of Food Lipids, vol. 10, no. 3, p. 251-265. https://doi.org/10.1111/j.1745-4522.2003.tb00019.x

Azimi, S. Z., Hosseini, S. S., Khodaiyan, F. 2021. Continuous clarification of grape juice using a packed bed bioreactor including pectinase enzyme immobilized on glass beads. Food Bioscience, vol. 40, p. 100877. https://doi.org/10.1016/j.fbio.2021.100877

Burini, V. M., Falcao, L. D., Gonzaga, L. V., Fett, R., Rosier, J. P., Bordignon, M. T. 2009. Colour, phenolic content and antioxidant activity of grape juice. Ciência e Tecnologia de Alimentos, vol. 30, no. 4, p. 1027-1032. https://doi.org/10.1590/s0101-20612010000400030

Camargo, U. A. 2004. ‘Isabel Precoce’: Alternativa Para a Vitivinicultura Brasileira. Comunicado Técnico N° 54; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2004.

Camargo, U. A.; Maia, J. D. G. “BRS Cora” nova cultivar de uva para suco, adaptada a climas tropicais. Comunicado Técnico N° 53; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2004.

Camargo, U. A.; Maia, J. D. G.; Nachtigal, J. C. “BRS Violeta” nova cultivar de uva para suco e vinho de mesa. In Comunicado Técnico N° 63; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2005.

Coelho, E. M., Padilha, C. V. S., Miskinis, G. A., Sá, A. G. B., Pereira, G. E., Azevedo, L. C., Lima, M. S. 2018. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. Journal of Food Composition and Analysis, vol. 66, p. 160-167. https://doi.org/10.1016/j.jfca.2017.12.017

Cosme, F., Pinto, T., Vilela, A. 2018. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages, vol. 4, no. 1, p. 22. https://doi.org/10.3390/beverages4010022

Costa, V. B., Andrade, S., Lemos, P., Bender, A., Goulart, C. Herter, F. G. 2019. Physico-chemical aspects of grape juices produced in the region of Campanha Gaucha, RS, Brazil (Southern Brazil). BIO Web of Conferences, vol. 12, p. 01018. https://doi.org/10.1051/bioconf/20191201018

Cumby, N., Zhong, Y., Naczk, M., Shahidi, F. 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, vol. 109, no. 1, p. 144-148. https://doi.org/10.1016/j.foodchem.2007.12.039

Dutra, M. C. P., Viana, A. C., Pereira, G. E., Nassur, R. C. M. R., Lima, M. S. 2021. Whole, concentrated and reconstituted grape juice: Impact of processes on phenolic composition, “foxy” aromas, organic acids, sugars and antioxidant Capacity. Food Chemistry, vol. 343, p. 128399. https://doi.org/10.1016/j.foodchem.2020.128399

Farias, C. A. A., Moraes, D. P., Lazzaretti, M., Ferreira, D. F., Zabot, G. L., Barin, J. S., Ballus, C. A., Barcia, M. T. 2021. Microwave hydrodiffusion and gravity as pretreatment for grape dehydration with simultaneous obtaining of high phenolic grape extract. Food Chemistry, vol. 337, p. 127723. https://doi.org/10.1016/j.foodchem.2020.127723

Fügel, R., Carle, R., Schieber, A. 2005. Quality and authenticity control of fruit purées, fruit preparations and jams—a review. Trends in Food Science and Technology, vol. 16, no. 10, p. 433-441. https://doi.org/10.1016/j.tifs.2005.07.001

Gamboa, G. G., Cerdán, T. G., Simunovic, Y. M., Álvarez, E. P. P. 2019. Amino acid composition of grape juice and wine: principal factors that determine its content and contribution to the human diet. Nutrients in beverages, vol. 12, p. 369-391. https://doi.org/10.1016/B978-0-12-816842-4.00010-1

Gurak, P. D., Cabral, L. M. C., Leao, M. H. M. R., Matta, V., Freitas, S. P. 2010. Quality evaluation of grape juice concentrated by reverse osmosis. Journal of Food Engineering, vol. 96, no. 3, p. 421-426. https://doi.org/10.1016/j.jfoodeng.2009.08.024

Haas, I. C. S., Toaldo, I. M., Gomes, T. M., Luna, A. S., Gois, J. S., Luiz, M. T. B. 2019. Polyphenolic profile, macro- and microelements in inaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, vol. 27, p. 66-74. https://doi.org/10.1016/j.fbio.2018.11.002

Haugaard, P., Hansen, E., Jensen, M., Grunert, K. G. 2014. Consumer attitudes toward new technique for preserving organic meat using herbs and berries. Meat Science, vol. 96, p. 126-135. https://doi.org/10.1016/j.meatsci.2013.06.010

Huwei, S., Asghari, M., Sheshglani, P. Z., Alizadeh, M. 2021. Modeling and optimizing the changes in physical and biochemical properties of table grapes in response to natural zeolite treatment. LWT, vol. 141, p. 110854. https://doi.org/10.1016/j.lwt.2021.110854

Iyer, M. M., Sacks, G. L., Padilla-Zakour, O. I. 2010. Impact of harvesting and processing conditions on green leaf volatile development and phenolics in concord grape juice. Journal of Food Sciences, vol. 75, no. 3, p. 297-304. https://doi.org/10.1111/j.1750-3841.2010.01559.x

Li, J., Zhang, C., Liu, H., Liu, J., Jiao, Z. 2020. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. Journal of Food Quality, vol. 2020, p. 1-11. https://doi.org/10.1155/2020/7236534

Liyana-Pathirana, C., Dexter, J., Shahidi, F. 2006. Antioxidant Properties of Wheat As Affected by Pearling. Journal of Agricultural and Food Chemistry, vol. 54, no. 17, p. 6177-6184. https://doi.org/10.1021/jf060664d

Lobo, V., Patil, A., Phatak, A., Chandra, N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, vol. 4, no. 8, p. 118–126. https://doi.org/10.4103/0973-7847.70902

Lúcia F. Pereira, A., Kelly G. Abreu, V. 2020. Lipid Peroxidation in Meat and Meat Products. Lipid Peroxidation Research. https://doi.org/10.1002/047167849x.bio050

Marszałek, K., Woźniak, Ł., Barba, F. J., Skąpska, S., Lorenzo, J. M., Zambon, A., Spilimbergo, S. 2018. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chemistry, vol. 268, p. 279-286. https://doi.org/10.1016/j.foodchem.2018.06.109

Mesquita, T. C., Schiassi, M. C. E. V., Lago, A. M. T., Gondim, Í. C., Silva, L. M., Lira, N. A., Carvalho, E. E. N., Lima, L. C. O. 2020. Grape juice blends treated with gamma irradiation evaluated during storage. Radiation Physics and Chemistry, vol. 168, p. 108570. https://doi.org/10.1016/j.radphyschem.2019.108570

Morris, J. R. 1998. Factors influencing grape juice quality. Horticulture Technology, vol. 8, no. 4, p. 471-478. https://doi.org/10.21273/horttech.8.4.471

Nassur, R. C. M. R., Pereira, G. E., Alves, J. A., Lima, L. C. O. 2014. Chemical characteristics of grape juices from different cultivar and rootstock combinations. Pesquisa Agropecuária Brasileira, vol. 49, no. 7. https://doi.org/10.1590/s0100-204x2014000700006

Navarro-Pascual-Ahuir, M., Lerma-García, M. J., Simó-Alfonso, E. F., Herrero-Martínez, J. M. 2015. Rapid Differentiation of Commercial Juices and Blends by Using Sugar Profiles Obtained by Capillary Zone Electrophoresis with Indirect UV Detection. Journal of Agricultural and Food Chemistry, vol. 63, no. 10, p. 2639-2646. https://doi.org/10.1021/acs.jafc.5b00122

Navarro-Pascual-Ahuir, M., Lerma-García, M. J., Simó-Alfonso, E. F., Herrero-Martínez, J. M. 2015. Quality control of fruit juices by using organic acids determined by capillary zone electrophoresis with poly(vinyl alcohol)-coated bubble cell capillaries. Food Chemistry, vol. 188, p. 596-603. https://doi.org/10.1016/j.foodchem.2015.05.057

Navarro-Pascual-Ahuir, M., Lerma-García, M. J., Simó-Alfonso, E. F., Herrero-Martínez, J. M. 2017. Analysis of Aliphatic Organic Acids in Commercial Fruit Juices by Capillary Electrophoresis with Indirect UV Detection: Application to Differentiation of Fruit Juices. Food Analytical Methods, vol. 10, no. 12, p. 3991-4002. https://doi.org/10.1007/s12161-017-0963-6

Nikolaou, C., Karabagias, I. K., Gatzias, I., Kontakos, S., Badeka, A., Kontominas, M. G. 2017. Differentiation of Fresh Greek Orange Juice of the Merlin Cultivar According to Geographical Origin Based on the Combination of Organic Acid and Sugar Content as well as Physicochemical Parameters Using Chemometrics. Food Analytical Methods, vol. 10, no. 7, p. 2217-2228. https://doi.org/10.1007/s12161-016-0757-2

Nile, S. H., Kim, S. H., Ko, E. Y., Park, S. W. 2013. Polyphenolic Contents and Antioxidant Properties of Different Grape (V. vinifera, V. labrusca, and V. hybrid) Cultivars. BioMed Research International, vol. 2013, p. 1-5. https://doi.org/10.1155/2013/718065

Ribeiro, T. P., Lima, M. A. C., Alves, R. E. 2012. Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesquisa Agropecuária Brasileira, vol. 47, no. 8, p. 1057-1065. https://doi.org/10.1590/s0100-204x2012000800005

Rizzon, L. A., Miele, A. 2012. Características analíticas e discriminação de suco, néctar e bebida de uva comerciais brasileiros. Ciência e Tecnologia de Alimentos, vol. 32, no. 1, p. 93-97. https://doi.org/10.1590/S0101-20612012005000015

Sayed, S. M. E., Youssef, A. M. 2019. Potential application of herbs and spices and their effects in functional dairy products. Heliyon, vol. 5, no. 6, p. e01989. https://doi.org/10.1016/j.heliyon.2019.e01989

Shahidi, F., Zhong, Y. 2005. Lipid Oxidation: Measurement Methods. Bailey’s Industrial Oil and Fat Products, https://doi.org/10.1002/047167849x.bio050

Silva, M. J. R., Padilha, C. V. S., Lima, M. S., Pereira, G. E., Filho, W. G. V., Moura, M. F., Tecchio, M. A. 2019. Grape juices produced from new hybrid varieties grown on Brazilian rootstocks – Bioactive compounds, organic acids and antioxidant capacity. Food Chemistry, vol. 289, p. 714-722. https://doi.org/10.1016/j.foodchem.2019.03.060

Soyer, Y., Koca, N., Karadeniz, F. 2003. Organic acid profile of Turkish white grapes and grape juices. Journal of Food Composition and Analysis, vol. 16, no. 5, p. 629-636. https://doi.org/10.1016/s0889-1575(03)00065-6

Stalmach, A., Edwards, C. A., Wightman, J. D., Crozier, A. 2011. Identification of (Poly)phenolic Compounds in Concord Grape Juice and Their Metabolites in Human Plasma and Urine after Juice Consumption. Journal of Agriculture and Food Chemistry, vol. 59, no. 17, p. 9512-9522. https://doi.org/10.1021/jf2015039 Yi, J., Kebede, B. T., Hai Dang, D. N., Buvé, C., Grauwet, T., Van Loey, A., Hu, X., Hendrickx, M. 2017. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT, vol. 75, p. 85-92. https://doi.org/10.1016/j.lwt.2016.08.041

Young, I. S., Woodside, J. V. 2001. Antioxidants in health and disease. Journal of Clinical Pathology, vol. 54, p. 176-86. http://dx.doi.org/10.1136/jcp.54.3.176

Zhao, L., Wang, M., Li, B., Dhanasekaran, S., Wang, K., Gu, X., Zhang, X., Zhang, H. 2021. Investigating proteome and transcriptome defense response of table grapes induced by Yarrowia lipolytica. Scientia Horticulturae, vol. 276, p. 109742. https://doi.org/10.1016/j.scienta.2020.109742

Zuanazzi, C., Maccari, P. A., Beninca, S. C., Branco, C. S. Theodoro, H., Vanderlinde, R., Siviero, J., Salvador, M. 2019. White grape juice increases high-density lipoprotein cholesterol levels and reduces body mass index and abdominal and waist circumference in women. Nutrition. Institute of Biotechnology, vol. 57, p. 109-114. https://doi.org/10.1016/j.nut.2018.05.026

Published

2021-10-28

How to Cite

Mankovecký, J., Galovičová, L., & Kačániová, M. (2021). The chemical composition of two kinds of grape juice with medicinal plant addition. Potravinarstvo Slovak Journal of Food Sciences, 15, 1082–1092. https://doi.org/10.5219/1692

Most read articles by the same author(s)

1 2 3 4 5 6 > >>