Microwave milk pasteurization without food safety risk


  • Péter Korzenszky Szent István University, Faculty of Mechanical Engineering, Institute of Process Engineering, Department of Metrology H-2103 GödöllÅ‘, Páter K. u. 1. (Hungary)
  • Péter Sembery Szent István University, Faculty of Mechanical Engineering, Institute of Process Engineering, Department of Metrology H-2103 GödöllÅ‘, Páter K. u. 1. (Hungary)
  • Gábor Géczi Szent István University, Faculty of Mechanical Engineering, Institute for Environmental Engineering Systems, H-2103 GödöllÅ‘, Páter K. u. 1. (Hungary)




primary processing, microwave, heat treatment, milk, Critical Controll Point (CCP)


According to nutrition science, milk and milk products are essential food for humans. The primary processing of milk includes its storage, separation, homogenization and the pasteurization process as well. The latter is a kind of heat treatment, which has been used to extend the storage life of food since the late 18th century. Although heat treatment of milk can be achieved through the use of microwave technology, the inhomogeneity of electromagnetic fields leads to an uneven distribution of temperature in the food products, therefore precluding their use in industry. The pasteurization operation is very often Critical Controll Point (CCP) according of food safety systems.

In recent years our research team has developed continuously operating heat treatment pilot-plant equipment, capable of measuring and contrasting the effects of different heat treatment methods, such as thermostat-controlled water baths and microwave energy, on liquid food products. We examined and compared protein, fat and bacterial content in samples of fresh cow milk with heat-treated cow milk samples. In addition, storage experiments were carried out under a microscope and recordings made of fat globules. Our results so far show that the microwave heat treatment is equivalent to the convection manner pasteurization technology, as we found no difference between the heat-treated products.


Download data is not yet available.


Albert, Cs., Lányi, Sz., Csapóné, Kiss Zs., Salamon, Sz., Csapó J. 2008. A mikrohullámú pasztőrözés hatása a tej összetételére II. The effect of microwave pasteurization of milk composition II. Acta Agraria Kaposváriensis., vol 12., no.3., p. 25-36

Beke, J., Kurják, Z., Bessenyei K. 2012: Konvekciós szárítási modellek alkalmazási lehetőségei a mikrohullámú szárítási folyamatokban. Convection drying applications of microwave drying process. Mezőgazdasági Technika Liii, vol. 7, p. 30-32.

Beszédes, S., László, Zs., Szabó, G., Hodúr, C. 2011. Effects of microwave pretreatments on the anaerobic digestion of food industrial sewage sludge. Environmental Progress & Sustainable Energy, vol. 30, no. 3, p. 486-492.

Beszédes, S., Tachon A., Lemmer, B., Ábel, M., Szabó, G., Hodúr, C. 2012. Bio-fuels from cellulose by Microwave Irradiation. Annals Of Faculty Of Engineering Hunedoara / International Journal Of Engineering, vol. 10, no. 2, p. 43-48.

Géczi, G., Sembery, P. 2010 Homogeneous Heating in the Inhomogeneous Electric Field. Bulletin of Szent István University. 2009, p. 309-317.

Kowalski, S., Lukasiewicz, M., Bednarz, S., Panuś, M. 2012. Diastase number changes during thermal and microwave processing of honey. Czech J. Food Sci., vol. 30, p. 21-26.

Kurják, Z., Barhács, A., Beke, J. 2012. Energetic Analysis of Drying Biological Materials with High Moisture Content by Using Microwave Energy. Drying Technology, vol. 30, no. 3, p. 312-319. https://doi.org/10.1080/07373937.2011.639473

KvVM 2005: Útmutató az elérhető legjobb technika meghatározásához a tejfeldolgozás terén, in english: A guide to the best available technology to determine milk processing p. 100., Retrieved from the web: <http://www.ippc.hu/ pdf/tej_utmutato.pdf>

Lakatos, E., Kovács, A. J., Végváry, Gy., Neményi, M. 2010. Mikrohullámú sugárzás hatása a fogyasztói tejben lévő lipáz és xantin-oxidáz enzimek működésére. In english: The effect of microwave radiation for the enzymes operation of lipases and xanthine oxidase of drinking milk. Magyar Állatorvosok lapja, vol. 132., p. 728-734.

Neményi, M., Lakatos, E., Kovács, A. J. 2006. Exaination of milk fat globule changes in microwave field. Journal of Food Physics, vol. 17-18, p. 29-42.

Sieber, R., Eberhard, P., Fuchs, D., Gallmann, P. U., Strahm, W. 1996. Effect of microwave heating on vitamins A, E, B1, B2 and B6 in milk. Journal of Dairy Research, vol. 63., p. 169-172. https://doi.org/10.1017/ S0022029900031642 PMid:8655740

Sierra, I., Vidal-Valverde, C. 2000. Influence of heating conditions in continuous-flow microwave or tubular heat exchange systems ont he vitamin B1 and B2 content of milk. INRA, EDP Sciences, Journal Lait, vol. 80, no. 6., p. 601-608.

Sierra, I., Vidal-Valverde, C. 2001: Vitamin B1 and B6 retention in milk after continuos flow microwave and conventional heating at high temeperatures. Journal of Food Protection, vol. 64, no. 6., p. 890-894. PMid:11403146

Villamiel, M., López-Fandino, R., Corzo, N., Martinez-Castro, I., Olano, A. 1996. Effects of continous flow microwave treatment on chemical and microbiological characteristics of milk. Zeitschrift für Lebensmitteluntersuchung und Forschung, vol. 202, no. 1., p. 15-18. https://doi.org/10.1007/BF01229677 PMid:8717091

Watanabe, F., Abe, K., Fujita, T., Goto, M., Hiemori, M., Nakano, Y. 1998: Effects of Microwave Heating ont he Loss of Vitamin B12 in Foods. Journal of Agricultural and Food Chemistry, vol. 46., p. 206-210. https://doi.org/10.1021/jf970670x PMid:10554220




How to Cite

Korzenszky, P. ., Sembery, P. ., & Géczi, G. . (2013). Microwave milk pasteurization without food safety risk. Potravinarstvo Slovak Journal of Food Sciences, 7(1), 45–48. https://doi.org/10.5219/260