Quality assessment of juice prepared from different varieties of currant (Ribes L.)

Authors

  • Andrea Mendelová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant Processing and Storage, A. Hlinku 2, 949 76 Nitra
  • Ľubomí­r Mendel Plant Production Research Center Piešťany, Bratislavská 122, 921 68 Piešťany
  • Tomáš Krajčovič Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant Processing and Storage, A. Hlinku 2, 949 76 Nitra
  • Peter Czako Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant Processing and Storage, A. Hlinku 2, 949 76 Nitra
  • Ján Mareček Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant Processing and Storage, A. Hlinku 2, 949 76 Nitra
  • Helena Frančáková Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Plant Processing and Storage, A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/602

Keywords:

currant, juice, anthocyanin, total polyphenols, antioxidant activity

Abstract

In the Slovak Republic currants are traditionally grown species of small fruits mainly in house gardens. Although currently their area is very small compared to the other types of fruit. We can see the importance of growing this genus (Ribes L.) in its good adaptability to climate conditions, in small growing demands and in stable production of nutritionally highly valuable fruit. Currant berries as well as fresh currant juice are characterized by the presence of whole complex of antioxidant active substances. The aim of this study was to evaluate the nutritional quality of currant juice prepared from various species and varieties of genus Ribes (L.). based on the content of their total polyphenols, anthocyanin dyes and antioxidant activity. In work we used varieties Blanka, Primus, Viktória, Heinemannova neskorá, Red Lake, Treny, Jonkheer van Tets, Fertödi, Titania, Triton and Öjebyn. Contents of evaluated components were assessed spectrophotometrically. Total polyphenol content of monitored samples determined by the Folin-Ciocalteu method reached values from 1897.43 mg GAE.dm-3 DM to 3712.21 mg GAE.dm-3 DM. The highest one was in juice from variety Primus and the lowest from variety Blanka. In white varieties of currant, the presence of anthocyanin dyes was immeasurable. In varieties of red and black currant anthocyanin dye content achieved values from 1947.64 mg.dm-3 DM (Jonkheer van Tets) to 4161.07 mg.dm-3 DM (Heinemannova neskorá). The antioxidant activity determined by the FOMO method reached values from 4130.42 mg AA.dm-3 DM to 6571.69 mg AA.dm-3 DM. We recorded the highest antioxidant activity in juice of variety Fertödi and the lowest of variety Primus.

Downloads

Download data is not yet available.

References

Battino, M., Beekwilder, J., Denoyes, R., Laimer, M., McDougall, G., Mezzetti, B. 2009. Bioactive compounds in berries relevant to human health. Nutriton Reviews, vol. 67, no. 1, p. 145-150. https://doi.org/10.1111/j.1753-4887.2009.00178.x

Borges, G., Degeneve, A., Mullen, W., Crozier, A. 2010. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry, vol. 58, no. 7, p. 3901-3909. https://doi.org/10.1021/jf902263n

Dénes, F., Lugasi, A., Hóvari, J., Kádar, G. 2011. Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Alimentaria, vol. 40, no. 1, p. 52-64. https://doi.org/10.1556/AAlim.40.2011.1.8

Fei, M., Peiwu, L., Zhang, Q., Yu, L., Zhang, L. 2015. Rapid determination of trans-resveratrol in vegetable oils using magnetic hydrophilic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chemistry, vol. 178, no. 1, p. 259-266. https://doi.org/10.1016/j.foodchem.2015.01.021

Goleniowski, M., Bonfill, M., Cusido, R., Palazón, J. 2013. Natural Products. Berlin: Springer Heidelberg, 2013, p. 1951-1973. ISBN 978-3-642-22143-9. https://doi.org/10.1007/978-3-642-22144-6_64

Kendir, G., Köroğlu, A. 2015. In vitro Antioxidant Effect of the Leaf and Branch Extracts of Ribes L. Species in Turkey. International Journal of Pharmaceutical Science Research, vol. 2, no. 108.

Koponen, J., Buchert, J., Poutanen, K. S., Tőrrőnen, R. 2008. Effect of pectinolytic juice production on the extractability and fate of bilberry and black currant anthocyanins. European Food Research Technology, vol. 227, no. 2, p. 485-494. https://doi.org/10.1007/s00217-007-0745-2

Lee, D. J., Lee, H., Lee, S. H., Lee, Ch. Y., Kim, D. 2013. Effects of Jam Processing on Anthocyanins and Antioxidant Capacities of Rubus coreanus Miquel Berry. Food Science Biotechnology, vol. 22, no. 6, p. 1607-1612.

Ma, F., Li., P., Zhang, Q., Yu, L., Zhang, L. 2015. Rapid determination of trans-resveratrol in vegetable oils using magnetic hydrophilic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chemistry, vol. 178, no. 1, p. 259-266. https://doi.org/10.1016/j.foodchem.2015.01.021

Mattila, P. H., Hellström, J., McDougall, G., Pihlava, J. M., Tiirikka, T., Karjalainen, R. O. 2011. Polyphenol and vitamin C content in European commercial black currant juice products. Food Chemistry, vol. 127, no. 3, p. 1216-1223. https://doi.org/10.1016/j.foodchem.2011.01.129

Määttä, K., Kamal-Eldin, A., Törrönen, R. 2001. Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Antioxidants and Redox Signaling, vol. 3, no. 6, p. 81-93. https://doi.org/10.1089/152308601317203521

Mikkelsen, B., Poll, L. 2002. Decomposition and transformation of aroma compounds and anthocyanins during black currant (Ribes nigrum L.) juice processing. Journal of Food Science, vol. 67, no. 9, p. 3447-3455. https://doi.org/10.1111/j.1365-2621.2002.tb09604.x

Mitić, M., Obradović, M., Kostić, D., Micić, R., Paunović, D. 2011. Phenolic Profile and Antioxidant Capacities of Dried Red Currant from Serbia, Extracted with Different Solvent. Food Science Biotechnology, vol. 20, no. 6, p. 1625-1631. https://doi.org/10.1007/s10068-011-0224-1

Moyer, R. J., Hummer, K. E., Finn, CH. E., Frei, B., Wrolstad, E. R. 2002. Anthocyanins, Phenolics, and Antioxidant Capacity in Diverse Small Fruits: Vaccinium, Rubus, and Ribes. Journal of Agriculture and Food Chemistry, vol. 50, no. 3, p. 519-525. https://doi.org/10.1021/jf011062r

Namiesnik, J., Vearasilp, K., Kupska, M., Ham, K. S., Kang, S., Park, Y. K., Baraschd D., Nenirovski A., Gorinstein S. 2013. Antioxidant activities and bioactive components in some berries. European Food Research and Technology, vol. 237, no. 5, p. 819-829. https://doi.org/10.1007/s00217-013-2041-7

Nour, V., Tradafir, I., Ionica, M. E. 2011. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Cambridge Journals, vol. 66, no. 5, p. 353-362. https://doi.org/10.1051/fruits/2011049

Nótin, B., Stégér, M., Juhász, R., Jakab, D., Monspart-Sényi, J., Barta, J. 2011. Changes of phenolic compounds in black currant during vacuum drying process. Acta Alimentaria, vol. 40, no. 1, p. 120-129. https://doi.org/10.1556/AAlim.40.2011.Suppl.12

Puupponen, R., Nohynek, L., Alakomi, H., Oksman, K. M. 2005. Bioactive berry compounds - novel tools against human pathogens. Applied Microbiology and Biotechnology, vol. 67, no. 1, p. 8-18. https://doi.org/10.1007/s00253-004-1817-x

Pinto, M., Lajolo, F., Genovese, M. 2007. Bioactive compouds and antioxidant capacity of strawberry jams. Plant Foods for Human Nutrition, vol. 62, no. 3, p. 127-131. PMID:17701363

Prieto, P., Pineda, M., Aguilar., M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, vol. 269, p. 337-341. https://doi.org/10.1006/abio.1999.4019 PMid:10222007

Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., Bobinas, C. 2005. Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, vol. 38, no. 8, p. 867-871.

Singleton, V. L., Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic - phosphotun gstic acid reagents. American Journal of Enology and Agriculture, vol. 14, no. 3. p. 144-158.

Sójka, M., Król, B. 2009. Composition of industrial seedless black currant pomace. European Food Research and Technology, vol. 228, no. 4, p. 597-605. https://doi.org/10.1007/s00217-008-0968-x

Talcott, S. T. 2007. Berry Fruit Value-Added Products for Health Promotion. USA: CRC Press, 2007, p. 51-72. ISBN 978-1-4200-0614-8. https://doi.org/10.1201/9781420006148.ch2

Szajdek, A., Borowska, E. J. 2008. Bioactive Compounds and Health-Promoting Propertiesof Berry Fruits: A Review. Plant Foods for Human Nutrition, vol. 63, no. 4, p. 147-156. https://doi.org/10.1007/s11130-008-0097-5

Downloads

Published

2016-05-28

How to Cite

Mendelová, A. ., Mendel, Ľubomí­r ., Krajčovič, T. ., Czako, P. ., Mareček, J. ., & Frančáková, H. . (2016). Quality assessment of juice prepared from different varieties of currant (Ribes L.). Potravinarstvo Slovak Journal of Food Sciences, 10(1), 276–281. https://doi.org/10.5219/602

Most read articles by the same author(s)

1 2 3 > >>