Potential of Lactobacillus plantarum ccm 3627 and Lactobacillus brevis ccm 1815 for fermentation of cereal substrates

Authors

  • Kvetoslava Romanová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology
  • Dana Urminská Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology

DOI:

https://doi.org/10.5219/696

Keywords:

sourdough fermentation, Lactobacillus, growth, acidification, proteolysis

Abstract

Lactobacillus is the most representative strain in a group of lactic acid bacteria, which perform an essential role in the preservation and production of wholesome foods. Lactic acid fermentation is the oldest traditional method for preparation of fermented vegetables, meat products, dairy products and cereal foods. Cereal grains are considered to be one of the most important sources of dietary proteins, carbohydrates, vitamins, minerals and fibre for people. The main exploitation of cereals is to prepare sourdough, which is a mixture of wheat, rye or other cereal flour with water and contains yeasts and lactobacilli. The basic biochemical changes that occur in sourdough bread fermentation are acidification of the dough with organic acids produced by the lactobacilli and leavening with carbon dioxide produced by the yeast and the lactobacilli. Acidification perhaps initiate enzymatic processes of proteins and phytates degradation. Lactobacilli produce various enzymes which make flavour precursors, improve of mineral bioavailability or degrade celiac active peptides, because some species of lactobacilli produce specific peptidases during growth, which are capable to hydrolyze hardly cleavable, celiac-active proline-rich peptides. Microbial fermentation with selected strains of lactobacilli may be new alternative approach for modification of gluten by hydrolysis. In this paper are described growth characteristics and intracellular aminopeptidases activities of Lactobacillus plantarum CCM 3627 and Lactobacillus brevis CCM 1815. Work was focused on characterization of the lactobacilli for potential usage as a starter culture in further fermentation experiments.


Downloads

Download data is not yet available.

References

Codex Standart 118-1979: 2008. Standard for foods for special dietary use for persons intolerant to gluten.

Cohen, D., Renes, J., Bouwman, F., Zoetendal, E., Mariman, E., De Wos, W., Vaughan, E. 2006. Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database. Proteomics, vol. 6, no. 24, p. 1-8. https://doi.org/10.1002/pmic.200600361 PMid:17115453

Di Cagno, R., De Angelis, M., Aauricchio, S., Greco, L., Clarke, Ch., De Vincenzi, M., Giovanni, C., D´Archivio, M., Landolfo, F., Parrilli, G., Minervini, F., Arendt, E., Gobbetti, M. 2004. Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, vol. 70, no. 2, p. 1088-1090. https://doi.org/10.1128/AEM.70.2.1088-1096.2004 PMid:14766592

Di Cagno, R., De Angelis, M., Lavermicocca, P., De Vincenzi, M., Giovanni, C., Faccia, M., Gobbetti, M. 2002. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied and Environmental Microbiology, vol. 68, no. 2, p. 623-624. https://doi.org/10.1128/AEM.68.2.623-633.2002 PMid:11823200

El Soda, M., Desmazeaud, M. 1982. Les peptide-hydrolases des lactobacilles du groupe Thermobacterium. I. Mise en évidence de ces activités chez Lactobacillus helveticus, L. acidophilus, L. lactis et L. bulgaricus. Canadian Journal of Microbiology, vol. 28, no. 10, p. 1181-1184. https://doi.org/10.1139/m82-174 PMid:6817904

Gobbetti, M., Rizzello, C. G., Di Cagno, R., De Angelis, M. 2014. How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, vol. 37, p. 30-38. https://doi.org/10.1016/j.fm.2013.04.012 PMid:24230470

Gänzle, M., Loponen, J., Gobbetti, M. 2008. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology, vol. 19, no. 10, p. 513-521. https://doi.org/10.1016/j.tifs.2008.04.002

Gänzle, M. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, vol. 37, p. 1-10. https://doi.org/10.1016/j.fm.2013.04.007 PMid:24230468

Gereková, P., Petruláková, Z., Šturdík, E. 2011. Importance of lactobacilli for bread-making industry. Acta Chimica Slovaca, vol. 4, no. 2, p. 119-123.

Hussain, M., Nezhad, M., Sheng, Y., Amoafo, O. 2013. Proteomics and the stressful life of lactobacilli. FEMS Microbiology letters, vol. 349, no. 1, p. 1-4. https://doi.org/10.1111/1574-6968.12274

Kocková, M. and Valík, Ľ. 2011. Potential of cereals and pseudocereals for lactic acid fermentations. Potravinarstvo, vol. 5, no. 2, p. 27-28. https://doi.org/10.5219/127

Kohajdová, Z., Karovičová, J. 2007. Fermentation of cereals for specific purpose. Journal of Food and Nutrition Research, vol. 46, no. 2, p. 51-55.

Laakso, K., Koskenniemi, K., Koponen, J., Kankainen, M., Surakka, A., Salusjärvi, T., Auvinen, P., Savijoki, K., Nyaman, T., Kalkkinen, N., Tynkkynen, S., Varmanen, P. 2011. Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium. Microbial Biotechnology, vol. 4, no. 6, p. 746-756. https://doi.org/10.1111/j.1751-7915.2011.00275.x PMid:21883975

Moroni, V., Dal Bello, F., Arendt, E. 2009. Sourdough in gluten-free bread making: An ancient technology to solve a novel issue? Food Microbiology, vol. 26, no. 7, p. 676-684. https://doi.org/10.1016/j.fm.2009.07.001 PMid:19747600

Nionelli, L., Rizzello, C. G. 2016. Sourdough-Based Biotechnologies for the Production of Gluten-Free Foods. Foods, vol. 5, no. 3, p. 1-7. https://doi.org/10.3390/foods5030065

Osella, C., De la Torre, M., Sánchez, H. 2014. Safe Foods for Celiac People. Food and Nutrition Sciences, vol. 5, no. 9, p. 787-800. https://doi.org/10.4236/fns.2014.59089

Rizzello, C., De Angelis, M., Di Cagno, R. 2007. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Applied and Environmental Microbiology, vol. 73, no. 14, p. 4499-4506. https://doi.org/10.1128/AEM.00260-07 PMid:17513580

Rollán, G., Gerez, C. L., Dallagnol, I. M., Torino, M. I., Font, G. 2010. Update in bread fermentation by lactic acid bacteria. Applied Microbiology and Microbial Biotechnology, p. 1168-1171.

Walter, T., Wieser, H., Koehler, P. 2014. Production of gluten-free wheat starch by peptidase treatment. Journal of Cereal Science, vol. 60, no. 1, p. 202-203. https://doi.org/10.1016/j.jcs.2014.02.012

Downloads

Published

2017-10-11

How to Cite

Romanová, K. ., & Urminská, D. . (2017). Potential of Lactobacillus plantarum ccm 3627 and Lactobacillus brevis ccm 1815 for fermentation of cereal substrates. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 544–549. https://doi.org/10.5219/696