Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol

Authors

  • Milan Sýs University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice
  • Simona Žabčí­ková University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice
  • Libor Červenka University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice
  • Karel Vytřas University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice

DOI:

https://doi.org/10.5219/713

Keywords:

adsorptive voltammetry, carbon nanotubes, extractive voltammetry, glassy carbon, graphene, retinol

Abstract

Adsorptive stripping voltammetry (AdSV) of retinol at solid glassy carbon electrode (GCE), carbon paste electrode (CPE) covered by thin layer of multi-wall carbon nanotubes (CPE/MWCNTs) and carbon paste electrode covered by thin layer of single layer graphene (CPE/Graphene) was compared with an extractive stripping voltammetry (ExSV) into silicone oil (SO) as lipophilic binder of glassy carbon paste electrode (GCPE). All types of selected working electrodes were characterized by a scanning electron microscopy to determine overall morphology of electrode surfaces together with spatial arrangement of used carbon particles. The retinol, also known as vitamin A1, was chosen as a model analyte because it is the most biologically active representative of retinoids which are classified as a significant group of lipophilic vitamins. Based on this comparison, it was observed that electrochemical method with high sensitivity (ExSV at GPCE) is generally characterized by shorter linear range of the calibration curve than in case of AdSV at CPE/MWCNTs or CPE/Graphene. Unlike AdSV at solid GCE, all other tested electrochemical methods could represent suitable analytical tools for monitoring of retinoids in different types of foodstuffs. Especially, content of retinol up to tenths milligrams can be easily determined using ExSV. Additionally, negative interference of chemical species present in real samples is minimal in comparison with direct voltammetric methods performed in supporting electrolytes based on organic solvents due to application of accumulation step in "ex-situ" mode.

Downloads

Download data is not yet available.

References

Abdel‑Galeil, M. M., Ghoneim, M. M., El‑Desoky, H. S., Hattori, T., Matsuda, A. 2014. Anodic stripping voltammetry determination of lead ions using highly sensitive modified electrodes based on multi-walled carbon nanotube. Journal of Chemistry and Biochemistry, vol. 2, no. 2, p. 25-43. https://doi.org/https://doi.org/10.15640/jcb.v2n2a2

Atuma, S. S., Lundström, K., Lindquist, J. 1975. The electrochemical determination of vitamin A. Part II. Further voltammetric determination of vitamin A and initial work on the determination of vitamin D in the presence of vitamin A. Analyst, vol. 100, no. 1196, p. 827‑834. https://doi.org/https://doi.org/10.1039/AN9750000827

Budnikov, G. K., Ziyatdinova, G. K., Gil'metdinova, D. M. 2004. Determination of some liposoluble antioxidants by coulometry and voltammetry. Journal of Analytical Chemistry, vol. 59, no. 7, p. 654‑658. https://doi.org/https://doi.org/10.1023/B:JANC.0000035278.20459.9e

Budnikov, G. K., Ziyatdinova, G. K., Gil'metdinova, D. M. 2005. Reactions of superoxide anion radical with antioxidants and their use in voltammetry. Journal of Analytical Chemistry, vol. 60, no. 1, p. 49-52. https://doi.org/https://doi.org/10.1007/s10809-005-0012-2

Cookeas, E. G., Efstathiou, C. E. 1992. Preconcentration of organic compounds at a diphenyl ether graphite paste electrode and determination of vanillin by adsorptive‑extractive stripping voltammetry. Analyst, vol. 117, no. 8, p. 1329-1334. https://doi.org/https://doi.org/10.1039/AN9921701329

Filik, H., Avan, A. A., Aydar S. 2016. Simultaneous electrochemical determination of α-tocopherol and retinol in micellar media by a poly(2,2′-(1,4 phenylenedivinylene)-bis-8-hydroxyquinaldine)-multiwalled carbon nanotube modified electrode. Analytical Letters, vol. 49, no. 8, p. 1240-1257. https://doi.org/10.1080/00032719.2015.1094665

Dejmkova, H., Zima, J., Mika, J. 2012, Behavior of glassy carbon paste electrode in flowing m ethanolic solutions. Electroanalysis, vol. 24, no. 8, p. 1766-1770. https://doi.org/https://doi.org/10.1002/elan.201100598

Goodman, D. S. 1984. Vitamin A and retinoids in health and disease. The New England Journal of Medicine, vol. 310, no. 16, p. 1023-1031. https://doi.org/https://doi.org/10.1056/NEJM198404193101605

Hallett, L. T. Editorial. 1960. Sensitivity of analytical methods. Analytical Chemistry, vol. 32, no. 9, 1057-1057. https://doi.org/https://doi.org/10.1021/ac60165a605

Hernández Méndez, J., Sánchez Pérez, A., Delgado Zamarreño, M., Hernández Garcia, M. L. 1988. Voltammetric determination of vitamin D3 with a rotating glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, vol. 6, no. 6‑8, p. 737-741. https://doi.org/https://doi.org/10.1016/0731-7085(88)80085-2

Hite, D. A. 2003. Determination of retinyl palmitate (vitamin A) in fortified fluid milk by liquid chromatography: collaborative study. Journal of AOAC International, vol. 86, no. 2, p. 375-385. PMid:12723921

Hočevar, S. B., Švancara, I., Ogorevc, B., Vytřas, K. 2007. Antimony film electrode for electrochemical stripping analysis. Analytical Chemistry, vol. 79, no. 22, p. 8639-8643. https://doi.org/https://doi.org/10.1021/ac070478m

Hodulová, L., Vorlová, L., Kostrhounová, R., Klimešová‑Vyletělová, M., Kuchtík, J. 2015. Interspecies and seasonal differences of retinol in dairy ruminant´s milk. Potravinarstvo, vol. 9, no. 1, p. 201-205. https://doi.org/https://doi.org/10.5219/436

Jaiswal, P. V., Ijeri, V. S., Srivastava, A. K. 2001. Voltammetric behavior of -tocopherol and its determination using surfactant + ethanol + water and surfactant + acetonitrile + water mixed solvent systems. Analytica Chimica Acta, vol. 441, no. 2, p. 201-206. https://doi.org/https://doi.org/10.1016/S0003-2670(01)01119-9

Kalvoda, R., Kopanica, M. 1989. Adsorptive stripping voltammetry in trace analysis. Pure and Applied Chemistry, vol. 61, no. 1, p. 97-112. https://doi.org/https://doi.org/10.1351/pac198961010097

Komarov, F. F., Mironov, A. M. 2004. Carbon nanotubes: Present and future. Physics and Chemistry of Solid State, vol. 5, no. 3, p. 411-429.

Kuzmany, H., Kukovecz, A., Simon, F., Holzweber, M., Kramberger, Ch., Pichler, T. 2004. Functionalization of carbon nanotubes. Synthetic Metals, vol. 141, no. 1-2, p.113‑122. https://doi.org/https://doi.org/10.1016/j.synthmet.2003.08.018

Lu, W., Soukiassian, P., Boeckl, J. 2012. Graphene: Fundamentals and functionalities. MRS Bulletin, vol. 37, no. 12, p. 1119‑1124. https://doi.org/10.1557/mrs.2012.279

Masek, A., Chrzescijanska, E., Zaborski, M. 2014. Voltammetric and FTIR spectroscopic studies of the oxidation of retinyl propionate at Pt electrode in non‑aqueous media. International Journal of Electrochemical Science, vol. 9, no. 12, p. 6809‑6820.

MacDougall, D., Crummett, W. B. 1980. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Analytical Chemistry, vol. 52, no. 14, p. 2242‑2249. https://doi.org/https://doi.org/10.1021/ac50064a004

McAllister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera‑Alonso, M., Milius, D. L., Car, R., Prud'homme, R. K., Aksay, I. A. 2007. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, vol. 19, no. 18, p. 4396‑4404. https://doi.org/https://doi.org/10.1021/cm0630800

Mikysek, T., Švancara, I., Kalcher, K., Bartoš, M., Vytřas, K., Ludvík, J. 2009. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Analytical Chemistry, vol. 81, no. 15, p. 6327-6333. https://doi.org/https://doi.org/10.1021/ac9004937

Murray, R. W., Ewing, A. G., Durst, R. A. 1987. Chemically modified electrodes. Molecular design for electroanalysis. Analytical Chemistry, vol. 59, no. 5, p. 379A-390A. https://doi.org/https://doi.org/10.1021/ac00132a001

Samec, Z. 2004. Electrochemistry at the interface between two immiscible electrolyte solutions. Pure and Applied Chemistry, vol. 76, no. 12, p. 2147-2180. https://doi.org/https://doi.org/10.1351/pac200476122147

Sun, Y. P., Fu, K., Lin, Y., Huang, W. 2002. Functionalized carbon nanotubes: Properties and applications. Accounts of Chemical Research, vol. 35, no. 12, p. 1096-1104. https://doi.org/https://doi.org/10.1021/ar010160v

Sýs, M., Metelka, R., Mikysek, T., Vytřas, K. 2015. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E. Chemical Papers, vol. 69, p. no. 1, p. 150-157. https://doi.org/https://doi.org/10.2478/s11696‑014‑0608‑9

Sýs, M., Stočes, M., Metelka, R., Vytřas, K. 2016. Electrochemical properties of a-tocopherol in aqueous electrolytes after its previous extraction into the glassy carbon paste from aqueous-acetonic mixture. Monatshefte für Chemie, vol. 147, p. 31-38. https://doi.org/https://doi.org/10.1007/s00706-015-1620-7

Sýs, M., Vytřas, K. 2016. Characterization of α‑tocopherol extraction into a selected carbon paste binder. Scientific Paper of the University of Pardubice Series A, vol. 22, p. 35-44.

Sýs, M., Žabčíková, S., Červenka, L., Vytřas, K. 2016. Adsorptive stripping voltammetry in lipophilic vitamins determination. Potravinarstvo, vol. 10, no. 1, p. 260-264. https://doi.org/https://doi.org/10.5219/587

Švancara, I., Hvízdalová, M., Vytřas, K., Kalcher, K., Novotný, R. 1996. A microscopic study of carbon paste electrodes. Electroanalysis, vol. 8, no. 1, p. 61-65. https://doi.org/https://doi.org/10.1002/elan.1140080113

Švancara, I., Konvalina, J., Schachl, K., Kalcher, K., Vytřas, K. 1988. Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode. Electroanalysis, vol. 10, no. 6, p. 435-441.

Švancara, I., Prior, Ch., Hočevar, S. B., Wang, J. 2010. A decade with bismuth‑based electrodes in electroanalysis. Electroanalysis, vol. 22, no. 13, p. 1405-1420. https://doi.org/https://doi.org/10.1002/elan.200970017

Švancara, I., Schachl, K. 1999. The testing of unmodified carbon paste electrodes. Chemické Listy, vol. 93, p. 490-499.

Tan, Y. D., Urbančok, D., Webster, R. D. 2014. Contrasting voltammetric behavior of different forms of vitamin A in aprotic organic solvents. The Journal of Physical Chemistry B, vol. 118, no. 29, p. 8591-600. https://doi.org/10.1021/jp505456q

Tuzhi, P., Zhongping, Y., Rongshan, L. 1990 Adsorptive/extractive voltammetry for determining clozapine at carbon paste electrodes. Chemical Journal of Chinese Universities, vol. 11, no. 10, p. 1067-1071.

Wang, J., Freiha, B. A. 1984. Extractive preconcentration of organic compounds at carbon paste electrodes. Analytical Chemistry, vol. 56, no. 4, p. 849-852. https://doi.org/https://doi.org/10.1021/ac00268a069

Wang, J., Freiha, B. A., Deshmukh, B. K. 1985. Adsorptive/extractive stripping voltammetry of phenothiazine compounds at carbon paste electrodes. Bioelectrochemistry and Bioenergetics, vol. 14, no. 4‑6, p. 457-467. https://doi.org/https://doi.org/10.1016/0302-4598(85)80018-0

Wang, L. H. 2000. Simultaneous determination of retinal, retinol and retinoic acid (all-trans and 13-cis) in cosmetics and pharmaceuticals at electrodeposited metal electrodes. Analytica Chimica Acta, vol. 415, no 1-2, p. 193-200. https://doi.org/10.1016/S0003-2670(00)00870-9

Webster, R. D. 2012. Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents. The Chemical Record, vol. 12, no. 1, p. 188-200. https://doi.org/https://doi.org/10.1002/tcr.201100005

Wring, S. A., Hart, J. P., Knight, D. W. 1988. Voltammetric behaviour of all-trans-retinol (vitamin A1) at a glassy carbon electrode and its determination in human serum using high-performance liquid chromatography with electrochemical detection. Analyst, vol. 113, no. 12, p. 1785-1789. https://doi.org/https://doi.org/10.1039/AN9881301785

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advamced Materials, vol. 22, no. 35, p. 3906-3924. https://doi.org/https://doi.org/10.1002/adma.201001068

Ziyatdinova, G., Giniyatova, E., Budnikov, H. 2010. Cyclic voltammetry of retinol in surfactant media and its application for the analysis of real samples. Electroanalysis, vol. 22, no. 22, p. 2708-2713. https://doi.org/https://doi.org/10.1002/elan.201000358

Ziyatdinova, G., Morozov, M., Budnikov, H. 2012. MWNT‑modified electrodes for voltammetric determination of lipophilic vitamins. Journal of Solid State Electrochemistry, vol. 16, no. 7, p. 2441-2447. https://doi.org/https://doi.org/10.1007/s10008-011-1581-7

Downloads

Published

2017-03-10

How to Cite

Sýs, M. ., Žabčí­ková, S. ., Červenka, L. ., & Vytřas, K. . (2017). Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 96–105. https://doi.org/10.5219/713

Most read articles by the same author(s)