Species of genera Botrytis, Fusarium and Rhizopus on grapes of the Slovak origin


  • Dana Tančinová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Zuzana Mašková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľubomí­r Rybárik Báb 49, 951 34 Báb
  • Viera Michalová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra




Botrytris, Fusarium, Rhizopus, grapes, trichothecenes


Our research was focused to identify the Botrytis, Fusarium and Rhizopus species from grapes of the Slovak origin. A further goal of the project was to characterized toxinogenic potential of chosen strains of species Fusarium. 50 samples of grapes, harvested in years 2011, 2012 and 2013 from various wine-growing regions were analyzed in this study. For the isolation of species the of direct plating method was used: a) surface-sterilized berries (using 1% freshly pre-pared chlorine) b) berries and c) damaged berries on DRBC (Dichloran Rose Bengal Chloramphenicol agar). For each analysis were used 50 berries (or all damaged berries from sample). The cultivation was carried at 25 ±1°C, for 5 to 7 days in dark. After incubation, the colonies of Botrytis, Fusarium and Rhizopus were transferred to identification media and after incubation strains were identified to species level.  Thirteen species of fusaria (F. acuminatum, F. avenaceum, F. culmorum, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans F. tricinctum and F. verticilioides) were identified. Frequency of fusaria isolation was 92 %. Botrytis cinerea was determined from 86% samples and Rhizopus from 94%. Chosen strains of species of genus Fusarium were able to produce following mycotoxins: deoxynivalenol, T-2 toxin, HT-2 toxin and diacetoxyscirpenol in in vitro conditions as determinated by thin-layer chromatography. Thirty-two (68%) of tested isolates of Fusarium species were able to produce at least one mycotoxin.


Download data is not yet available.


Amézqueta, S., Schorr-Galindo, S., Murillo-Arbizu, M., González-Peñas, E. 2012. OTA-producing fungi in foodstuffs: A review. Food Control, vol. 26, no. 2, p. 259-268. https://doi.org/10.1016/j.foodcont.2012.01.042

Barata, A., Malfeito-Ferreira, M., Loureiro, V. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology, vol. 153, no. 3, p. 243-259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025

Bautista-Baños, S., Bosquez-Molina, E., Barrera-Necha, L. L. 2014. Rhizopus stolonifer (soft rot). In Bautista-Baños, S. Postharvest Decay. Amsterdam, Netherland : Elsevier, p. 1-44. https://doi.org/10.1016/B978-0-12-411552-1.00001-6

Bellí, N., Bau, M., Marín, S., Abarca, M. L. Ramos, A. J., Bragulat, M. R. 2006. Mycobiota and ochratoxin A producing fungi from Spanish wine grapes. International Journal of Food Microbiology, vol. 111, suppl. no. 1, p. S40-S45.

Chunmei, J., Junling, S., Qi´an, H., Yanlin, L. 2013. Occurrence of toxin-producing fungi in intact and rotten table and wine grapes and related influencing factors. Food Control, vol. 31, no. 1, p. 5-13. https://doi.org/10.1016/j.foodcont.2012.09.015

Commission Regulation (EC) No. 472/2002 of 12 March 2002 amending Regulation (EC) No. 466/2001 setting maximum levels for certain contaminants infoodstuffs.

Commission Regulation (EC) No. 123/2005 of 26 January 2005 amending Regulation (EC) No. 466/2001 as regards ochratoxin A.

Felšöciová, S., Tančinová, D., Rybárik, Ľ., Mašková, Z., Kačániová, M. 2015. Mycobiota of Slovak wine grapes with emphasis on Aspergillus and Penicillium species in the Small Carpatian area. Potravinarstvo, vol. 9, no. 1, p. 501-508. https://dx.doi.org/10.5219/529

González, H. H. L., Pacin, A., Resnik, S. L., Martinez, E. J. 1996. Deoxynivalenol and contaminant mycoflora in freshly harvested Argentinean wheat in 1993. Mycopathologia, vol. 135, no. 2, p. 129-134. https://doi.org/10.1007/BF00436463

Kassemeyer, H. H., Berkelmann-Löhnertz, B. 2009. Fungi of grapes. In König, H. et al. Biology of Microorganisms on Grapes, in Must and in Wine. Berlin, Germany : Heidelberg : Springer - Verlag, p. 61-87. https://doi.org/10.1007/978-3-540-85463-0_4

Labuda, R., Tančinová, D. 2006. Fungi recovered from Slovakian poultry feed mixtures and their toxinogenity. Annals of Agricultural and Environmental Medicine, vol. 13, no. 2, 193-200. PMid:17195991

Leslie, J. F., Summerell, B. A. 2006. The Fusarium Laboratory Manual. Australia : Blackwell Publishing. 388 p. ISBN 978-0-8138-1919-8. https://doi.org/10.1046/j.1365-3059.1996.d01-10.x

Lisker, N., Keren-Shacham, Z., Sarig, P., Zutkhi, Y., Ben-Aire, R. 1996. The biology and pathology of the fungus Rhizopus stolonifer, cause of black mould disease of table grapes in Israel. Plant Pathology, vol. 45, no. 6, p. 1099-1109. https://doi.org/10.1046/j.1365-3059.1996.d01-10.x

Lopez Pinar, A., Rauhut, D., Ruehl, E., Buettner, A. 2016. Effects of Botrytis cinerea and Erysiphe necator fungi on the aroma character of grape must: A comparative approach. Food Chemistry, vol. 207, p. 251-260. https://doi.org/10.1016/j.foodchem.2016.03.110 PMid:27080903

Lorenzini, M., Zapparoli, G. 2015. Occurrence and Infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration. Antonie van Leeuwenhoek, vol. 108, no. 5, p 1171-1180. https://doi.org/10.1007/s10482-015-0570-8 PMid:26459338

Lorenzini, M., Cappello, M. S., Logrieco, A., Zapparoli, G. 2016. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes. International Journal of Food Microbiology, vol. 238, p. 56-62. https://doi.org/10.1016/j.ijfoodmicro.2016.08.039 PMid:27591387

Magnoli, C., Violante, M., Combina, M., Palacio, G., Dalcero, A. 2003. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Letters in Applied Microbiology, vol. 37, no. 2, p. 179-184. https://doi.org/10.1046/j.1472-765X.2003.01376.x

Marin, S., Ramos, A. J., Cano-Sancho, G., Sanchis, V. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, vol. 60, p. 218-237. https://doi.org/10.1016/j.fct.2013.07.047

Nelson, P. E., Toussoun, T. A., Marasas, W. F. O. 1983. Fusarium species. An illustrated manual for identification. USA : The Pennsylvania State University. 193 p. ISBN 0-271-00349-9.

Oliveri, C., Catara, V. 2011. Mycoflora and biodiversity of black Aspergilli in vineyard eco-systems. In Grillo, O. et al. The Dynamical Processes of Biodiversity - Case Studies of Evolution and Spatial Distribution. Rijeka, Croatia : InTech, p. 259-276. ISBN 978-953-307-772-7. https://doi.org/10.5772/24611

Perutka, Z., Šufeisl, M., Strnad, M., Šebela, M. 2016. Protein profiling of a white wine produced from grapes damaged by Botrytis cinerea. New Biotechnology, vol. 33, p. 180. https://doi.org/10.1016/j.nbt.2016.06.1346

Pitt, J. I., Hocking, A. D. 2009. Fungi and food spoilage. 3rd ed. London, New York : Springer Science & Business Media, LLC, 519 p. ISBN 978 0-387-92206-5. https://doi.org/10.1016/j.ijfoodmicro.2010.08.005

Samson, R. A., Houbraken, U., Thrane, U., Frisvad, J. C., Andersen, B. 2010. Food and Indoor Fungi. Utrecht, Netherlands : CBS-KNAW Fungal Biodiversity Centre, 390 p. ISBN 978-90-70351-82-3.

Samson, R. A., Hoekstra, E. S., Frisvad, J. C., Filtenborg, O. 2002. Introduction to food- and airborne fungi. Utrecht, Netherlands : Centraalbureau voor Schimmelcultures. 389 p. ISBN 90-70351-42-0. https://doi.org/10.5580/104b

Serra, R., Braga, A., Venâncio, A. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Research in Microbiology, vol. 156, no. 4, p. 515-521. https://doi.org/10.1016/j.resmic.2004.12.005

Serra, R., Lourenço, A., Alípio, P., Venâncio, A. 2006. Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Mycological research, vol. 110, no. 8, p. 971-978. https://doi.org/10.1016/j.mycres.2006.05.010

Somma, S., Perrone, G., Logrieco, A. 2012. Diversity of black Aspergilli and mycotoxin risk in grape, wine and dried vine fruits. Phytopathologia, vol. 51, no. 1, p. 131-147.

Tosi, E., Fedrizzi, B., Azzolini, M., Finato, F., Simonato, B., Zapparoli, G. 2012. Effects of noble rot on must composition and aroma profile of Amarone wine produced by the traditional grape withering protocol. Food Chemistry, vol 130, no, 2, p. 370-375. https://doi.org/10.1016/j.foodchem.2011.07.053

Tournas, V. H., Katsoudas, E. 2005. Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, vol. 105, no. 1, p. 11-17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002

Vega, M., Ríos, G., von Baer, D., Mardones, C., Tessini, C., Herlitz, E., Saelzer, R., Ruiz, M. A. 2012. Ochratoxin A occurrence in wines produced by Chile. Food Control, vol. 28, no. 1, p. 147-150. https://doi.org/10.1016/j.foodcont.2012.04.032




How to Cite

Tančinová, D. ., Mašková, Z. ., Rybárik, Ľubomí­r ., & Michalová, V. . (2017). Species of genera Botrytis, Fusarium and Rhizopus on grapes of the Slovak origin. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 403–409. https://doi.org/10.5219/763

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.