Electronic nose in edible insects area


  • Martin Adámek Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Technická 3058/10, 616 00 Brno
  • Anna Adámková Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Kamýcká 129, 165 21 Prague 6 ”“ Suchdol
  • Marie Borkovcová Mendel University in Brno, Faculty of Agronomy, Department of Zoology, Fisheries, Hydrobiology and Agriculture, Zemědělská 1, 613 00 Brno
  • Jiří­ Mlček Tomas Bata University in Zlin, Faculty of Technology, Department of Food Analysis and Chemistry, Vavreckova 275, 760 01 Zlin
  • Martina Bednářová Mendel University in Brno, Department of Information Technology, Zemědělská 1, 613 00 Brno
  • Lenka Kouřimská Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Department of Microbiology, Nutrition and Dietetics, Kamýcká 129, 165 21 Prague 6 ”“ Suchdol
  • Josef Skácel Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Technická 3058/10, 616 00 Brno
  • Michal Řezní­ček Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Technická 3058/10, 616 00 Brno




e-nose, edible insect, mealworm, giant mealworm, Arduino


Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor) and giant mealworm (Zophobas morio) using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking) and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP).


Download data is not yet available.


Adámková, A., Kouřimská, L., Borkovcová, M., Kulma, M., Mlček, J. 2016. Nutritional values of edible coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo, vol. 10, no. 1, p. 663-671. https://doi.org/10.5219/609

Borkovcová, M., Bednářová, M., Fišer, V., Ocknecht, P. 2009. The food variegation by insects (Kuchyně hmyzem zpestřená 1). Brno, Czech Republic : Lynx. 135 p. ISBN 978-80-86787-37-4.

Carlsson, M. A., Kalinová, B. 2005. Disclosed mystery of olfaction (Tajemství čichu poodhaleno). Vesmír, vol. 84, no. 3, p. 148-155.

Degenhardt, D. C., Greene, J. K., Khalilian, A. 2012. Temporal Dynamics and Electronic Nose Detection of Stink Bug-Induced Volatile Emissions from Cotton Bolls. Psyche A Journal of Entomology, vol. 2012, p. 9. https://doi.org/10.1155/2012/236762

Gopal, D. 2015. Electronic Nose 'Smells' Rotting Food! [online] 2015-11-17 [cit. 2016-04-17]. Available at: http://www.youngzine.org/article/electronic-nose-smells-rottingfood.

Hanboonsong, Y. 2010. Edible insects and associated food habits in Thailand. In Forest insects as food: humans bite back, Proceedings of a workshop on Asia-Pacific resources and their potential for developmen. Bangkok, Thailand : FAO Regional Office for Asia and the Pacific, p. 173-182. ISBN 978-92-5-106488-7.

Haščík, P., Elimam, I. O. E., Garlík, J., Bobko, M., Kročko, M. 2013. Sensory evaluation of broiler meat after addition Slovak bee pollen in their feed mixture. Potravinarstvo, vol. 7, no. 1, p. 107-110. https://doi.org/10.5219/280

Henderson, W. G., Khalilian, A., Han, Y. J., Greene, J. K., Degenhardt, D. C. 2010. Detecting stink bugs/damage in cotton utilizing a portable electronic nose. Computers and Electronics in Agriculture, vol. 70, no. 1, p. 157-162. https://doi.org/10.1016/j.compag.2009.09.019

Kinclová, V., Jarošová, A., Tremlová, B. 2004. Sensory analysis of food (Senzorická analýza potravin). Veterinářství vol. 54, no. 6, p. 362-364.

Lan, Y., Zheng, X., Westbrook, J. K., Lopez, J., Lacey, R., Hoffmann, W. C., 2008. Identification of Stink Bugs Using an Electronic Nose. Journal of Bionic Engineering, vol. 5, suppl., p. 172-180.

Looy, H., Dunkel, F. V., Wood, J. R. 2014. How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, vol. 31, no. 1, p. 131-141. https://doi.org/10.1007/s10460-013-9450-x

Ramos-Elorduy, J., Moreno, J. M. P., Prado, E. E., Perez, M. A., Otero, J. L., de Guevara, O. L. 1997. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. Journal of Food Composition and Analysis, vol. 10, no. 2, p. 142-157. https://doi.org/10.1006/jfca.1997.0530

Ramos-Elorduy, J. 1998. Creepy Crawly Cuisine: The Gourmet Guide to Edible Insects. Rochester, Vermont : Park Street Press, 160 p. ISBN-13: 978-0892817474.

Rizzolo, A., Bianchi, G., Lucido, P., Cangelosi, B., Pozzi, L., Villa, G., Clematis, F., Pasini, C., Curir, P. 2015. Electronic nose for the early detection of red palm weevil (Rhynchophorus ferrugineus Olivier) infestation in palms: Preliminary results. In Proccedings of the Second International Symposium on Horticulture in Europe, ISHS Acta Horticulturae 1099. Leuven : International Society for Horticultural Science (ISHS), pp. 347-356. ISBN 978-94-62610-96-5.

Suh, Ch. P. C., Ding, N., Lan, Y. 2011. Using an Electronic Nose to Rapidly Assess Grandlure Content in Boll Weevil Pheromone Lures. Journal of Bionic Engineering, vol. 8, no. 4, p. 449-454. https://doi.org/10.1016/S1672-6529(11)60050-4

Tan, H. S. G., Fischer, A. R. H., Tinchan, P., Stieger, M., Steenbekkers, L. P. A., van Trijp, H. C. M. 2015. Insects as food: exploring cultural exposure and individual experience as determinants of acceptance. Food Quality and Preference, vol. 42, p. 78-89. https://doi.org/10.1016/j.foodqual.2015.01.013

The eNose Company, 2016. eNose Technology [online] s.a. [cit. 2016-04-17] Available at: http://www.enose.nl/rd/technology/.

Wu, J., Jayas, D. S., Zhang, Q., White, N. D. G., York, R. K. 2013. Feasibility of the application of electronic nose technology to detect insect infestation in wheat. Canadian Biosystems Engineering / Le Genie des biosystems au Canada, vol. 55, p. 3.1-3.9. https://doi.org/10.7451/CBE.2013.55.3.1

Yen, A. L. 2009. Edible insects: Traditional knowledge or western phobia? Entomological Research, vol. 39, no. 5, p. 289-298. https://doi.org/10.1111/j.1748-5967.2009.00239.x

Zhang, H., Wang, J. 2007. Detection of age and insect damage incurred by wheat, with an electronic nose. Journal of Stored Products Research, vol. 43, no. 4, p. 489-495. https://doi.org/10.1016/j.jspr.2007.01.004

Zhou, B., Wang, J., 2011. Use of electronic nose technology for identifying rice infestation by Nilaparvata lugens. Sensors and Actuators B: Chemical, vol. 160, no. 1, p. 15-21. https://doi.org/10.1016/j.snb.2011.07.002




How to Cite

Adámek, M. ., Adámková, A. ., Borkovcová, M. ., Mlček, J. ., Bednářová, M. ., Kouřimská, L. ., Skácel, J. ., & Řezní­ček, M. . (2017). Electronic nose in edible insects area. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 446–451. https://doi.org/10.5219/785

Most read articles by the same author(s)

1 2 3 4 5 > >>