Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers


  • Ayman El-Fiki National Centre for Radiation Research and Technology, Department of Natural products, Biotechnology Div., Atomic Energy Authority Egypt, Ahmed El-Zomur St., P.O.Box: 29, Nasr City, Cairo
  • Mohamed Adly National Centre for Radiation Research and Technology, Department of Natural products, Biotechnology Div., Atomic Energy Authority Egypt, Ahmed El-Zomur St., P.O.Box: 29, Nasr City, Cairo



DNA polymorphism, genetic diversity, heterozygosity, PIC, SSR, wheat


Wheat (Triticum aestivum L.) is the most important and strategic cereal crop in Egypt and has many bread wheat varieties. Seventeen Egyptian bread wheat varieties used in this study with a set of sixteen wheat microsatellite markers to examine their utility in detecting DNA polymorphism, estimating genetic diversity and identifying genotypes. A total of 190 alleles were detected at 16 loci using 16 microsatellite primer pairs. The number of allele per locus ranged from 8 to 20, with an average of 11.875. The polymorphic information content (PIC) and marker index (MI) average values were 0.8669, 0.8530 respectively. The (GA) n microsatellites were the highest polymorphic (20 alleles). The Jaccard's Coefficient for genetic similarity was ranged from 0.524 to 0.109 with average of 0.375. A dendrogram was prepared based on similarity matrix using UPGMA algorithm, divided the cultivars into two major clusters. The results proved the microsatellite markers utility in detecting polymorphism due to the discrimination of cultivars and estimating genetic diversity.


Download data is not yet available.


Anderson, J. A., Ogihara, Y., Sorrells, M. E., Tanksley, S. D. 1992. Development of a chromosomal arm map for wheat based on RFPL markers. Theoretical Applied Genetics., vol. 83, no. 8, p. 1035-1043.

Arora, A., Kundu, S., Dilbaghi, N., Sharma, I., Tiwari, R. 2014. Population structure and genetic diversity among Indian wheat varieties using microsatellite (SSR) markers. Australian Journal of Crop Science, vol. 8, no. 9, p. 1281-1289. Available at:

Bered, F., Terra, T. F., Spellmeier, M., Neto, J. F. B. 2005. Genetic variation among and within sweet corn populations detected by RAPD and SSR markers. Crop Breeding and Applied Biotechnology, vol. 5, no. 4, p. 418-425.

Bohn, M., Utz, H. E., Melchinger, A. 1999. Genetic Similarities among Winter Wheat Cultivars Determined on the Basis of RFLPs, AFLPs, and SSRs and Their Use for Predicting Progeny Variance. Crop Science, vol. 39, no. 1, p. 228-237.

Bredemeijer, G. M. M., Arens, P., Wouters, D., Visser, D., Vosman, B. 1998. The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theoretical Applied Genetics, vol. 97, no. 4, p. 584-590.

Chen, H. B., Martin, J. M., Lavin, M., Talbert, L. E. 1994. Genetic diversity in hard red spring wheat based on sequence tagged site PCR markers. Crop Science, vol 34, no. 6, p. 1628-1632.

Coombs, J. J., Frank, L. M., Souches, D. S. 2004. An applied fingerprinting system for cultivated potato using simple sequence repeats. American Journal of Potato Research, vol. 81, no. 4, p. 243-250.

Devos, K. M., Atkinson, M. D., Chinoy, C. N., Liu, C. J., Gale, M. D. 1992. RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theoretical Applied Genetics, vol. 83, no. 8, p. 931-939.

Devos, K. M., Millan, T., Gale, M. D. 1993. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theoretical Applied Genetics, vol. 85, no. 6-7, p. 784-792.

Dreisigacker, S., Zhang, P., Warburton, M. L., Van Ginkel, M., Hoisington, D., Bohn, M., Melchinger, A. E. 2004. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Science, vol. 44, no. 2, p. 381-388.

Dvojkovic, K., Šatovic, Z., Drezner, G., Somers, D. J., Lalic, A., Novoselovic, D., Horvat, D., Maric, S. Šarcevic, H. 2010. Allelic variability of Croatian wheat cultivars at the microsatellite locus Xgwm261. Poljoprivreda, vol. 16, p. 32-37.

FAOSTAT. 2008. FAO Statistical Databases. Food and agriculture organization of the United Nations, Statistics Division. Available at:

Garcia, A. F., Alberini, J. L., Zucchi, M. I., De Souza, A. P. 2007. Microsatellite molecular markers in the cultivar identification of Brazilian soybean for human consumption. Crop Breeding and Applied Biotechnology, vol.7, p. 155-164.

Gupta, P. K., Varshney, R. K. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, vol. 113, no. 3, p. 163-185.

Gupta, P. K., Varshney, R. K., Sharma, P. C., Ramesh, B. 1999. Review Molecular markers and their applications in wheat breeding. Plant Breeding, vol. 118, no. 5, p. 369-390.

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale (New research on floral distribution). Bulletin de la Societé Vaudoise des Sciences Naturelles, vol. 44, p. 223-270. (In French)

Khalighi, M., Arzani, A., Poursiahbidi, M. A. 2008. Assessment of genetic diversity in Triticum spp. and Aegilops spp. using AFLP markers. African Journal of Biotechnology, vol. 7, p. 552-546.

Khodadadi, M., Fotokian, M. H., Miransari, M. 2011. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Sciences, vol. 5, no. 1, no.1, p. 17-2. Available at:

Kumar, S., Kumar, V., Kumari P., Kirti, Singh, A. K. Singh, R. 2016. DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. Journal of Environmental Biology, vol. 37, p. 319-326.

Litt, M., Lutty, J. A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, vol. 44, no. 3, p. 397-401.

Liu, K., Muse, S. V. 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, vol. 21, no. 9, p. 2128-2129.

Manifesto, M. M., Schlatter, A. R., Hopp, H. E., Suarez, E. Y., Dubcovsky, J. 1999. Bread wheat (Triticum aestivum) fingerprinting using microsatellites. Plant Anim Genome 7th Conf., p.371. Available at:

Mason, A. S. 2015. SSR Genotyping. Plant Genotyping. In: Batley J. Plant Genotyping. Methods in Molecular Biology (Methods and Protocols). Humana Press, New York, NY, p 77-89.

Mir, R. R., Kumar, J., Balyan, H. S. Gupta, P. K. 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genetic Resources and Crop Evolution, vol. 59, no. 5, p. 717-726.

Morgante, M., Olivieri, A. M. 1993. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, vol. 3, no. 1, p. 175-182.

Paull, J. G., Chalmers, K. J., Karakousis, A., Kretschmer, J. M., Manning, S., Langridge, P. 1998. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical Applied Genetics, vol. 96, no. 3-4, p. 435-446.

Pavel, A. B., Vasile, C. I. 2012. PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics, vol. 13, no. 9, p. 13-19.

Plaschke, J., Ganal, M. W., Röder, M. S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical Applied Genetics, vol. 91, no. 6-7, p. 1001-1007.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, vol. 2, no. 3, p. 225-238.

Prasad, M., Varshney, R. K., Kumar, A., Balyan, H. S., Sharma, P. C., Edwards, K. J., Singh, H., Dhaliwal, H. S., Roy, J. K., Gupta, P. K. 1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical Applied Genetics, vol. 99, no. 1-2, p. 341-345.

Prasad, M., Varshney, R. K., Roy, J. K., Balyan, H. S., Gupta, P. K. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical Applied Genetics, vol. 100, no. 3, p. 584-592.

Ramanatha, V. R., Hodgkin, T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Culture, vol. 68, no. 1, p. 1-19.

Röder, M. S., Plaschke, J., Konig, S. U., Borner, A., Sorrells, M. E., Tanksley, S. D., Ganal, M. W. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics, vol. 246, no. 3, p. 327-333.

Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., Ganal, M. W. 1998. A microsatellite map of wheat. Genetics, vol. 149, no. 4, p. 2007-2023.

Rongwen, J., Akkaya, M. S., Bhagwat, A. A., Lavi, U., Cregan, P. B. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics, vol. 90, no. 1, p. 43-48.

Roy, J. K., Prasad, M., Varshney, R. K., Balyan, H. S., Blake, T. K., Dhaliwal, H. S., Singh, H., Edwards, K. J., Gupta, P. K. 1999. Identification of a microsatellite on chromosome 6B and a STS on 7D of bread wheat showing association with preharvest sprouting tolerance. Theoretical Applied Genetics, vol. 99, no. 1-2, p. 336-340.

Russell, J., Fuller, J., Young, G., Thomas, B., Taramino, G., Macaulay, M., Waugh, R., Powell, W. 1997. Discriminating between barley genotypes using microsatellite markers. Genome, vol. 40, no. 4, p. 442-450.

Saeidi, H., Rahiminejad, M. R., Vallian, S., Heslop-Harrison, J. S. 2006. Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genetic Resources and Crop Evolution, vol. 53, p. 1477-1484.

Spanic, V., Buerstmayr, H. Derezner, G. 2012. Assessment of genetic diversity of wheat genotypes using microsatellite markers. Periodicum Biologorum, vol. 114, no. 1, p. 37-42.

Stephenson, P., Bryan, G., Kirby, J., Collins, A., Devos, K., Busso, C., Gale, M. 1998. Fifty new microsatellite loci for the wheat genetic map. Theoretical Applied Genetics, vol. 97, no. 5-6, p. 946-949.

Struss, D., Plieske, J. 1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical Applied Genetics, vol. 97, no. 1-2, p. 308-315.

Tahernezhad, Z., Zamani, M. J., Solouki, M., Zahravi, M., Imamjomeh, A. A., Jafaraghaei, M., Bihamta, M. R. 2010. Genetic diversity of Iranian Aegilops tauschii Coss. using microsatellite molecular markers and morphological traits. Molecular Biology Reports, vol. 37, no. 7, p. 3413-3420.

Thomason, M. J., Septiningsih, E. M., Suwardjo, F., Santoso, T. J., Silitonga, T. S., McCouch, S. R. 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theoretical Applied Genetics, vol. 114, no. 3, p. 559-568.

Varshney, R. K., Prasad, M., Roy, J. K., Kumar, N., Harjit-Singh, Dhaliwal, H. S., Balyan, H. S., Gupta, P. K. 2000. Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theoretical Applied Genetics, vol. 100, no. 8, p. 1290-1294.

Vivodík, M., Gálová, Z., Balážová, Z., Petrovičová, L. 2016. Start codon targeted (SCOT) polymorphism reveals genetic diversity in European old maize (Zea mays L.) genotypes. Potravinarstvo Slovak Journal of Food Sciences, vol. 10, no. 1, p. 563-569.

Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G., Lathrop, M. 1992. A second-generation linkage linkage map of the human genome. Nature, vol. 359, p. 794-801.

Xie, D. X., Devos, K. M., Moore, G., Gale, M. D. 1993. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theoretical Applied Genetics, vol. 87, no. 1-2, p. 70-74.



How to Cite

El-Fiki, A. ., & Adly, M. . (2019). Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 100–108.