Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers

Authors

  • Ayman El-Fiki National Centre for Radiation Research and Technology, Department of Natural products, Biotechnology Div., Atomic Energy Authority Egypt, Ahmed El-Zomur St., P.O.Box: 29, Nasr City, Cairo https://orcid.org/0000-0002-1114-9236
  • Mohamed Adly National Centre for Radiation Research and Technology, Department of Natural products, Biotechnology Div., Atomic Energy Authority Egypt, Ahmed El-Zomur St., P.O.Box: 29, Nasr City, Cairo

DOI:

https://doi.org/10.5219/978

Keywords:

DNA polymorphism, genetic diversity, heterozygosity, PIC, SSR, wheat

Abstract

Wheat (Triticum aestivum L.) is the most important and strategic cereal crop in Egypt and has many bread wheat varieties. Seventeen Egyptian bread wheat varieties used in this study with a set of sixteen wheat microsatellite markers to examine their utility in detecting DNA polymorphism, estimating genetic diversity and identifying genotypes. A total of 190 alleles were detected at 16 loci using 16 microsatellite primer pairs. The number of allele per locus ranged from 8 to 20, with an average of 11.875. The polymorphic information content (PIC) and marker index (MI) average values were 0.8669, 0.8530 respectively. The (GA) n microsatellites were the highest polymorphic (20 alleles). The Jaccard's Coefficient for genetic similarity was ranged from 0.524 to 0.109 with average of 0.375. A dendrogram was prepared based on similarity matrix using UPGMA algorithm, divided the cultivars into two major clusters. The results proved the microsatellite markers utility in detecting polymorphism due to the discrimination of cultivars and estimating genetic diversity.

Downloads

Download data is not yet available.

References

Anderson, J. A., Ogihara, Y., Sorrells, M. E., Tanksley, S. D. 1992. Development of a chromosomal arm map for wheat based on RFPL markers. Theoretical Applied Genetics., vol. 83, no. 8, p. 1035-1043. https://doi.org/10.1007/BF00232969

Arora, A., Kundu, S., Dilbaghi, N., Sharma, I., Tiwari, R. 2014. Population structure and genetic diversity among Indian wheat varieties using microsatellite (SSR) markers. Australian Journal of Crop Science, vol. 8, no. 9, p. 1281-1289. Available at: http://www.cropj.com/tiwari_8_9_2014_1281_1289.pdf

Bered, F., Terra, T. F., Spellmeier, M., Neto, J. F. B. 2005. Genetic variation among and within sweet corn populations detected by RAPD and SSR markers. Crop Breeding and Applied Biotechnology, vol. 5, no. 4, p. 418-425. https://doi.org/10.12702/1984-7033.v05n04a07

Bohn, M., Utz, H. E., Melchinger, A. 1999. Genetic Similarities among Winter Wheat Cultivars Determined on the Basis of RFLPs, AFLPs, and SSRs and Their Use for Predicting Progeny Variance. Crop Science, vol. 39, no. 1, p. 228-237. https://doi.org/10.2135/cropsci1999.0011183X003900010035xb

Bredemeijer, G. M. M., Arens, P., Wouters, D., Visser, D., Vosman, B. 1998. The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theoretical Applied Genetics, vol. 97, no. 4, p. 584-590. https://doi.org/10.1007/s001220050934

Chen, H. B., Martin, J. M., Lavin, M., Talbert, L. E. 1994. Genetic diversity in hard red spring wheat based on sequence tagged site PCR markers. Crop Science, vol 34, no. 6, p. 1628-1632. https://doi.org/10.2135/cropsci1994.0011183X003400060037x

Coombs, J. J., Frank, L. M., Souches, D. S. 2004. An applied fingerprinting system for cultivated potato using simple sequence repeats. American Journal of Potato Research, vol. 81, no. 4, p. 243-250. https://doi.org/10.1007/BF02871765

Devos, K. M., Atkinson, M. D., Chinoy, C. N., Liu, C. J., Gale, M. D. 1992. RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theoretical Applied Genetics, vol. 83, no. 8, p. 931-939. https://doi.org/10.1007/BF00232953

Devos, K. M., Millan, T., Gale, M. D. 1993. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theoretical Applied Genetics, vol. 85, no. 6-7, p. 784-792. https://doi.org/10.1007/BF00225020

Dreisigacker, S., Zhang, P., Warburton, M. L., Van Ginkel, M., Hoisington, D., Bohn, M., Melchinger, A. E. 2004. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Science, vol. 44, no. 2, p. 381-388. https://doi.org/10.2135/cropsci2004.0381

Dvojkovic, K., Šatovic, Z., Drezner, G., Somers, D. J., Lalic, A., Novoselovic, D., Horvat, D., Maric, S. Šarcevic, H. 2010. Allelic variability of Croatian wheat cultivars at the microsatellite locus Xgwm261. Poljoprivreda, vol. 16, p. 32-37.

FAOSTAT. 2008. FAO Statistical Databases. Food and agriculture organization of the United Nations, Statistics Division. Available at: http://faostat.fao.org/site/339/default.aspx

Garcia, A. F., Alberini, J. L., Zucchi, M. I., De Souza, A. P. 2007. Microsatellite molecular markers in the cultivar identification of Brazilian soybean for human consumption. Crop Breeding and Applied Biotechnology, vol.7, p. 155-164. https://doi.org/10.12702/1984-7033.v07n02a07

Gupta, P. K., Varshney, R. K. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, vol. 113, no. 3, p. 163-185. https://doi.org/10.1023/A:1003910819967

Gupta, P. K., Varshney, R. K., Sharma, P. C., Ramesh, B. 1999. Review Molecular markers and their applications in wheat breeding. Plant Breeding, vol. 118, no. 5, p. 369-390. https://doi.org/10.1046/j.1439-0523.1999.00401.x

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale (New research on floral distribution). Bulletin de la Societé Vaudoise des Sciences Naturelles, vol. 44, p. 223-270. https://doi.org/10.5169/seals-268684. (In French)

Khalighi, M., Arzani, A., Poursiahbidi, M. A. 2008. Assessment of genetic diversity in Triticum spp. and Aegilops spp. using AFLP markers. African Journal of Biotechnology, vol. 7, p. 552-546.

Khodadadi, M., Fotokian, M. H., Miransari, M. 2011. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Sciences, vol. 5, no. 1, no.1, p. 17-2. Available at: http://www.cropj.com/khodadadi_5_1_2011_17_24.pdf

Kumar, S., Kumar, V., Kumari P., Kirti, Singh, A. K. Singh, R. 2016. DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. Journal of Environmental Biology, vol. 37, p. 319-326.

Litt, M., Lutty, J. A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, vol. 44, no. 3, p. 397-401.

Liu, K., Muse, S. V. 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, vol. 21, no. 9, p. 2128-2129. https://doi.org/10.1093/bioinformatics/bti282

Manifesto, M. M., Schlatter, A. R., Hopp, H. E., Suarez, E. Y., Dubcovsky, J. 1999. Bread wheat (Triticum aestivum) fingerprinting using microsatellites. Plant Anim Genome 7th Conf., p.371. Available at: http://www.intl-pag.org/

Mason, A. S. 2015. SSR Genotyping. Plant Genotyping. In: Batley J. Plant Genotyping. Methods in Molecular Biology (Methods and Protocols). Humana Press, New York, NY, p 77-89. https://doi.org/10.1007/978-1-4939-1966-6_6

Mir, R. R., Kumar, J., Balyan, H. S. Gupta, P. K. 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genetic Resources and Crop Evolution, vol. 59, no. 5, p. 717-726. https://doi.org/10.1007/s10722-011-9713-6

Morgante, M., Olivieri, A. M. 1993. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, vol. 3, no. 1, p. 175-182. https://doi.org/10.1111/j.1365-313X.1993.tb00020.x

Paull, J. G., Chalmers, K. J., Karakousis, A., Kretschmer, J. M., Manning, S., Langridge, P. 1998. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical Applied Genetics, vol. 96, no. 3-4, p. 435-446. https://doi.org/10.1007/s001220050760

Pavel, A. B., Vasile, C. I. 2012. PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics, vol. 13, no. 9, p. 13-19. https://doi.org/10.1186/1471-2105-13-9

Plaschke, J., Ganal, M. W., Röder, M. S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical Applied Genetics, vol. 91, no. 6-7, p. 1001-1007. https://doi.org/10.1007/BF00223912

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, vol. 2, no. 3, p. 225-238. https://doi.org/10.1007/BF00564200

Prasad, M., Varshney, R. K., Kumar, A., Balyan, H. S., Sharma, P. C., Edwards, K. J., Singh, H., Dhaliwal, H. S., Roy, J. K., Gupta, P. K. 1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical Applied Genetics, vol. 99, no. 1-2, p. 341-345. https://doi.org/10.1007/s001220051242

Prasad, M., Varshney, R. K., Roy, J. K., Balyan, H. S., Gupta, P. K. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical Applied Genetics, vol. 100, no. 3, p. 584-592. https://doi.org/10.1007/s001220050077

Ramanatha, V. R., Hodgkin, T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Culture, vol. 68, no. 1, p. 1-19. https://doi.org/10.1023/A:1013359015812

Röder, M. S., Plaschke, J., Konig, S. U., Borner, A., Sorrells, M. E., Tanksley, S. D., Ganal, M. W. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics, vol. 246, no. 3, p. 327-333. https://doi.org/10.1007/BF00288605

Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., Ganal, M. W. 1998. A microsatellite map of wheat. Genetics, vol. 149, no. 4, p. 2007-2023. https://doi.org/10.1007/BF00279889

Rongwen, J., Akkaya, M. S., Bhagwat, A. A., Lavi, U., Cregan, P. B. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics, vol. 90, no. 1, p. 43-48. https://doi.org/10.1007/BF00220994

Roy, J. K., Prasad, M., Varshney, R. K., Balyan, H. S., Blake, T. K., Dhaliwal, H. S., Singh, H., Edwards, K. J., Gupta, P. K. 1999. Identification of a microsatellite on chromosome 6B and a STS on 7D of bread wheat showing association with preharvest sprouting tolerance. Theoretical Applied Genetics, vol. 99, no. 1-2, p. 336-340. https://doi.org/10.1007/s001220051241

Russell, J., Fuller, J., Young, G., Thomas, B., Taramino, G., Macaulay, M., Waugh, R., Powell, W. 1997. Discriminating between barley genotypes using microsatellite markers. Genome, vol. 40, no. 4, p. 442-450. https://doi.org/10.1139/g97-059

Saeidi, H., Rahiminejad, M. R., Vallian, S., Heslop-Harrison, J. S. 2006. Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genetic Resources and Crop Evolution, vol. 53, p. 1477-1484. https://doi.org/10.1007/s10722-005-7110-8

Spanic, V., Buerstmayr, H. Derezner, G. 2012. Assessment of genetic diversity of wheat genotypes using microsatellite markers. Periodicum Biologorum, vol. 114, no. 1, p. 37-42.

Stephenson, P., Bryan, G., Kirby, J., Collins, A., Devos, K., Busso, C., Gale, M. 1998. Fifty new microsatellite loci for the wheat genetic map. Theoretical Applied Genetics, vol. 97, no. 5-6, p. 946-949. https://doi.org/10.1007/s001220050975

Struss, D., Plieske, J. 1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical Applied Genetics, vol. 97, no. 1-2, p. 308-315. https://doi.org/10.1007/s001220050900

Tahernezhad, Z., Zamani, M. J., Solouki, M., Zahravi, M., Imamjomeh, A. A., Jafaraghaei, M., Bihamta, M. R. 2010. Genetic diversity of Iranian Aegilops tauschii Coss. using microsatellite molecular markers and morphological traits. Molecular Biology Reports, vol. 37, no. 7, p. 3413-3420. https://doi.org/10.1007/s11033-009-9931-6

Thomason, M. J., Septiningsih, E. M., Suwardjo, F., Santoso, T. J., Silitonga, T. S., McCouch, S. R. 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theoretical Applied Genetics, vol. 114, no. 3, p. 559-568. https://doi.org/10.1007/s00122-006-0457-1

Varshney, R. K., Prasad, M., Roy, J. K., Kumar, N., Harjit-Singh, Dhaliwal, H. S., Balyan, H. S., Gupta, P. K. 2000. Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theoretical Applied Genetics, vol. 100, no. 8, p. 1290-1294. https://doi.org/10.1007/s00122005143

Vivodík, M., Gálová, Z., Balážová, Z., Petrovičová, L. 2016. Start codon targeted (SCOT) polymorphism reveals genetic diversity in European old maize (Zea mays L.) genotypes. Potravinarstvo Slovak Journal of Food Sciences, vol. 10, no. 1, p. 563-569. https://doi.org/10.5219/660

Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G., Lathrop, M. 1992. A second-generation linkage linkage map of the human genome. Nature, vol. 359, p. 794-801. https://doi.org/10.1038/359794a0

Xie, D. X., Devos, K. M., Moore, G., Gale, M. D. 1993. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theoretical Applied Genetics, vol. 87, no. 1-2, p. 70-74. https://doi.org/10.1007/BF00223747

Published

2019-02-19

How to Cite

El-Fiki, A. ., & Adly, M. . (2019). Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 100–108. https://doi.org/10.5219/978