ABSTRACT

After processing of citrus fruits (e.g. lemon, orange, grapefruit, mandarin) for juice and essential oils production, approximately 50% of the original fruit mass is left as waste material. Citrus crops processing by-products are valuable components as they contain nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity. Utilisation of these kind of side products in the recipe of various cereal product led to enhancement of final product nutritional value and better sensory attributes as well as improvement of product functional properties. In this work was studied the effect of orange and mandarin dietary fibre application at level 5 and 10% (w/w) in tarhana preparation and the influence on tarhana fermentation process. Chemical analysis showed, that dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Orange and mandarin dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour. Application of fruit dietary fibre preparations to tarhana recipe caused a rapid decrease in pH from 4.70 – 5.02 to values 4.31 – 4.51 during fermentation process. Reducing saccharides served as an available source of energy for fermenting microbiota and their concentration decreased from 24.5 – 32.8 to 2.2 – 0.2 g/kg after 144 h incubation. Fermentation also led to lactic acid (1.67 – 2.09 g/kg) and acetic acid (1.91 – 2.53 g/kg) production as a consequence of present microorganisms metabolic activity. Sensory evaluation of samples showed, that higher proportion of citrus dietary fibre preparations (10%) negatively affected taste, odour, consistency and sourness. Among all prepared tarhana samples with proportion of citrus dietary fibre preparation was the most acceptable tarhana with 5% of mandarin dietary fibre.

Keywords: fruit; dietary fibre; tarhana; fermentation

INTRODUCTION

Processing of citrus fruits (oranges, mandarins, etc.) in the production of juices and essential oils constitute approximately 50% of original whole fruit mass wastes. This remaining product is mainly used as feed, however, it also contains valuable nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity (Braddock, 1995; Topuz et al., 2005). Fibre-rich by-products may be incorporated into food products as inexpensive, non-caloric ingredients for partial replacement of flour, fat or saccharides, as enhancers of water and oil retention and to improve emulsion or oxidative stabilities (Elleuch et al., 2011).

Tarhana is cereal-based fermented product. It is prepared from wheat flour, yoghurt and other ingredients. After mixing of all ingredients the dough is formed, which ferment 1 – 7 days at temperature 25 – 30 °C by using lactic acid bacteria from yoghurt culture (Lactobacillus bulgaricus, Streptococcus thermophiles) and yeasts Saccharomyces cerevisiae. Tarhana is usually reconstituted with water and served as a hot soup generally consumed at lunch and dinner (Erbaş et al., 2006; Lar et al. 2012; Sengun et al., 2009). Tarhana has an acidic and sour taste with a strong yeasty flavor (Kaya et al., 1999).

Tarhana is very nutritive food because of nutritional deficiency in wheat is mostly eliminated by yoghurt. Its nutritional value is increased and digestion is facilitated by fermentation (Dalgiç and Belibağ, 2008). The protein, polysaccharide and lipid components of tarhana are subjected to partial digestion and hydrolysis by lactic acid bacteria and yeasts during fermentation, resulting in a product with improved digestive properties (Tamer et al., 2007). Fermentation of tarhana also results in significant increases of riboflavin, niacin, pantothenic acid and folic acid contents (Bilgiçli, 2009). Tarhana is also a good source of calcium, iron, zinc as well as some other minerals (Daglioğlu, 2000).

The objective of this work was to prepare dietary fibre preparations obtained from citrus crops (orange and mandarin) and perform the determination of chemical and functional properties of obtained dietary fibre preparations and subsequently evaluate the suitability of fruit dietary fibre incorporation to the tarhana recipe and observe fermentation process by determination of pH, reducing saccharides, lactic and acetic acid concentrations as well as sensory evaluation of final products.

doi:10.5219/424

Available online: 25 May 2015 at www.potravinarstvo.com

© 2015 Potravinarstvo. All rights reserved. ISSN 1337-0960 (online)
License: CC BY 3.0
MATERIAL AND METHODOLOGY
Dietary fibre (DF) preparations were obtained from orange (cultivar Valencia) and mandarin (cultivar Clemenville) purchased from local markets. From the cleaned citrus crops were separated inner part of peels (albedo), which was subsequently dried for 6 days at 27 °C. Finally the peels were milled and sieved to obtain 400 μm particle size (Marín et al., 2007). The yoghurt was laboratory prepared from bovine UHT milk, 3.5% fat. Reducing sugar (saccharides) were determined according to Ibanoğlu et al. (1999) and least gelation concentration (LG C) and gelation time according to Figuerola et al. (2005). Determination of chemical parameters (Table 1) showed, that citrus dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Comparable concentration of proteins in fruit DF preparations also reported Yasar et al. (2007). The content of TDF in both preparations exceeded 50%, what is according to Figuerola et al. (2005) minimal criterion for TDF concentration in DF preparations. Citrus dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gelation concentration compared to wheat flour.

During tarhana fermentation was observed a decrease in pH values (Figure 1a) from 4.70 – 5.02 to 4.31 – 4.51. Ibanoğlu et al. (1999) reported a decrease in pH values of tarhana samples (control, sample without salt addition, sample with double amount of added yoghurt and tarhana prepared from whole wheat flour) from initial values of 4.7 – 5.2 to 4.3 – 4.8 after 96 h fermentation at 30 °C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fine wheat flour</th>
<th>Orange dietary fibre</th>
<th>Mandarin dietary fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>11.39 ±0.25</td>
<td>9.19 ±0.08</td>
<td>9.11 ±0.70</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>0.55 ±0.00</td>
<td>2.76 ±0.04</td>
<td>2.53 ±0.01</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>10.48 ±0.15</td>
<td>3.66 ±0.11</td>
<td>4.35 ±0.17</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>1.54 ±0.03</td>
<td>2.33 ±0.02</td>
<td>2.06 ±0.01</td>
</tr>
<tr>
<td>Total dietary fibre (%)</td>
<td>2.25 ±0.04</td>
<td>64.41 ±0.69</td>
<td>61.28 ±0.57</td>
</tr>
<tr>
<td>WAC (g.g⁻¹)</td>
<td>3.20 ±0.04</td>
<td>5.82 ±0.05</td>
<td>5.16 ±0.09</td>
</tr>
<tr>
<td>OAC (g.g⁻¹)</td>
<td>2.45 ±0.02</td>
<td>3.15 ±0.01</td>
<td>4.81 ±0.02</td>
</tr>
<tr>
<td>SWC (cm³.g⁻¹)</td>
<td>2.51 ±0.07</td>
<td>10.87 ±0.16</td>
<td>7.52 ±0.10</td>
</tr>
<tr>
<td>LGC (%)</td>
<td>6.00 ±0.00</td>
<td>8.00 ±0.00</td>
<td>8.00 ±0.00</td>
</tr>
</tbody>
</table>

WAC/OAC – water/oil absorption capacity, SWC – swelling capacity, LGC – least gelation concentration
Table 2 Sensory properties of tarhana samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taste</th>
<th>Odour</th>
<th>Consistency</th>
<th>Sourness</th>
<th>Overall acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.0 ±0.0</td>
<td>6.9 ±0.1</td>
<td>7.0 ±0.0</td>
<td>6.8 ±0.1</td>
<td>99.2 ±0.5</td>
</tr>
<tr>
<td>ODFP 5 %</td>
<td>6.7 ±0.2</td>
<td>6.8 ±0.0</td>
<td>6.8 ±0.1</td>
<td>6.4 ±0.0</td>
<td>90.0 ±1.8</td>
</tr>
<tr>
<td>ODFP 10 %</td>
<td>6.3 ±0.3</td>
<td>5.7 ±0.2</td>
<td>5.1 ±0.3</td>
<td>5.4 ±0.1</td>
<td>87.2 ±1.1</td>
</tr>
<tr>
<td>MDFP 5 %</td>
<td>6.9 ±0.0</td>
<td>6.8 ±0.1</td>
<td>6.7 ±0.2</td>
<td>6.5 ±0.2</td>
<td>95.3 ±2.0</td>
</tr>
<tr>
<td>MDFP 10 %</td>
<td>5.9 ±0.1</td>
<td>5.5 ±0.1</td>
<td>5.3 ±0.2</td>
<td>5.9 ±0.2</td>
<td>84.5 ±0.8</td>
</tr>
</tbody>
</table>


Figure 1 Changes in pH values (a) and concentration of reducing saccharides (b) during fermentation of tarhana, ODFP – orange dietary fibre preparation, MDFP – mandarin dietary fibre preparation.
Reducing saccharides are fermentable saccharides and their concentration decreased with increasing period of fermentation (Singh et al., 2013). The concentration of reducing saccharides (Figure 1b) rapidly dropped in first 24 h of fermentation and in further process decreased slightly or remains constant.

Characteristic products of lactic acid fermentation by using lactic acid bacteria are lactic acid and acetic acid, which lower pH value and thus inhibit undesirable and pathogenic bacteria (Kohajdová and Karovičová, 2008). The concentration of lactic acid (Figure 2) increased during tarhana fermentation and at the end of the process reached values in range 1.67 – 2.09 g/kg.

Determination of acetic acid (Figure 3) showed, that its concentration gradually increased with advancing time of fermentation and after 144 h reached values in range 1.91 – 2.53 g/kg. According to Sroka and Tuszyński (2007) the production of organic acids during fermentation depends on the concentration of available saccharides and nitrogen sources as well as on the pH value.

Sensory evaluation of tarhana samples (Table 2) showed, that higher amounts (10%) of added orange and mandarin dietary fibre preparations negatively affected taste, odour,
consistency and sourness. Among all prepared tarhana samples with proportion of citrus dietary fibre preparation was the most acceptable tarhana with 5% of mandarin dietary fibre

CONCLUSION
Crisus dietary fibre preparations are valuable nutritive components of citrus crops. Prepared dietary fibre preparations obtained from orange and mandarin showed high content of total dietary fibre (64.41 and 61.28%) and higher concentration of ash and fat compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Citrus dietary fibre preparations reached higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour.

Application of prepared orange and mandarin dietary fibre preparations to tarhana recipe led to significant decrease in pH values during fermentation. Concentration of reducing saccharides was reduced due to its utilization as an available source of energy for fermenting microorganisms. During fermentation was also observed lactic acid and acetic acid production. Sensory evaluation showed that higher amounts of added fruit preparations negatively affected taste, odour, consistency and sourness. The most acceptable among tarhana samples incorporated with citrus dietary fibre preparations was by panelists chosen tarhana with 5% proportion of mandarin dietary fibre.

REFERENCES
Acknowledgments:
This work was supported by grant VEGA No. 1/0453/13.

Contact address:
Ing. Michal Magala, PhD., Slovak University of Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Department of Food Science and Technology, Radlinského 9, 812 37 Bratislava, Slovakia, E-mail: michal.magala@stuba.sk.

Ing. Zlatica Kohajdová, PhD., Slovak University of Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Department of Food Science and Technology, Radlinského 9, 812 37 Bratislava, Slovakia, E-mail: zlatica.kohajdova@stuba.sk.

doc. Ing. Jolana Karovičová, PhD., Slovak University of Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Department of Food Science and Technology, Radlinského 9, 812 37 Bratislava, Slovakia, E-mail: jolana.karovicova@stuba.sk.

Ing. Andrea Šubová, Slovak University of Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Department of Food Science and Technology, Radlinského 9, 812 37 Bratislava, Slovakia, E-mail: andrea.subova@stuba.sk.