EFFECT OF GRAPE SEED EXTRACT ON QUALITY OF RAW-COOKED MEAT PRODUCTS

Marek Bobko, Peter Haščík, Miroslav Kročko, Lenka Trembecká, Andrea Mendelová, Jana Tkáčová, Peter Czako, Tomáš Tóth

ABSTRACT

In the present study we aimed to evaluate the oxidative stability of Spiš frankfurters after application of grape seeds extracts (Blauburger + Cabernet Sauvignon and Danube) in amount of 10 mL.kg⁻¹ during 12 days of their storage at 4 °C. Sensory evaluation of Spiš frankfurters was carried out after 4 days of storage by 6-point ranking system (Surface appearance and color, appearance and color when cut, texture, aroma and flavor). It was found that sensory quality of Spiš frankfurters was not significantly (p >0.05) affected by application of grape seed extracts. Oxidation stability of Spiš frankfurters after 12 days of storage at 4 °C was positively influenced (p ≤0.05) only in the group with addition of extract made from grape seed Blauburger +Cabernet Sauvignon. This may probably related with the higher antioxidant activity of extract of this variety (100.5%) compared to an extract made from grape seed variety of Danube (55.8%). Also, it was not found significant differences (p >0.05) of antioxidant activity between extract made from grape seeds variety Danube compared with the control group.

Keywords: grape seed; extract; Spiš frankfurter; oxidative stability; sensory quality

INTRODUCTION

The lipid oxidation is one of the major problems in meat industries. Meat products that are constituted of lipid and polyunsaturated fatty acids (PUFAs) tend to deteriorate due to lipid oxidation, leading to development of unpleasant flavours during processing and storage (Sanchez-Moreno et al., 1999; Mielenk et al., 2006). In addition to the undesirable quality, the adverse effect of lipid oxidation leads to the development of free radicals which are involved in diseases and a range of disorders including cancer, arthritis, atherosclerosis, Alzheimer’s disease, and diabetes. To prevent lipid oxidation in meat products, synthetic antioxidants can be used. However, synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) have been shown to be carcinogenic and have, thus, restricted use in foods (Baydar et al., 2007).

In the past few years, various plant materials containing phenolic compounds have been demonstrated to be effective antioxidants in model systems. Flavonoids, the most potent antioxidative compounds of plant phenolics occur in vegetables, fruits, berries, herbs, and tea leaves (Wrolstad and Skrede, 2002).

According to the estimates provided by the Organisation Internationale de la Vignet et du Vin (OIV), annual process of grapes is estimated at around 66.5 million tonnes, with 38 million tonnes produced in Europe. At European level, the grape pomace production is about 8 million tonnes per year in total (Burg et al., 2014).

A significant part of the grape pomace is comprised by grape seed which amounts to 38 – 52% on dry matter basis (Maier, 2009).

Among the beneficial effects of parts of a grape, grape seeds are believed to have a powerful antioxidant property due to its rich source of polyphenol compounds. The polyphenol compounds in grape seeds are in range of 60 – 70%, only 10 % is in the fruit, and 28 – 35% in the peels (Garcia-Marino et al., 2006; Nawaz et al., 2006).

It is likely that the demand for using natural antioxidants such as grape seed extract (GSE) has greatly increased in recent years. GSEs are substantially constituted with proanthocyanidins. They can react with free radicals and catalyzed metal ions necessary for the oxidation reaction then terminate chain reactions by removing radical intermediates, and inhibit other oxidation reactions by being oxidized themselves (Shahidi and Wanasundara, 1992; Sanchez-Moreno et al., 1999). The phenolic substances in GSE ranges from 80% to 99%, the most important being resveratrol (trans-3,4′,5′-trihydroxystilbene). Due to the strong antioxidant activity of resveratrol, it can inhibit peroxidation in a concentration-dependent manner. It does not scavenge hydroxyl radical nor does it react with H₂O₂, making it an
inefficient catalyst of subsequent oxidation (Murcia and Martinez-Tome, 2001).

In addition, GSE is rich in proanthocyanidins. The multiple mechanisms of their antioxidant activity are expressed in its ability of radical scavenging, metal chelation, and synergism with other antioxidants (Lu and Foo, 1999).

Based on the findings of many researches (Lau and King, 2003; Miélik et al., 2006; Ahn et al., 2007; Goni et al., 2007; Brenes et al., 2010; Tekeli et al., 2014; Iqbal et al., 2015; Lichonikova et al., 2015; Tournour et al., 2016; Guerrera-Rivas et al., 2016; Brenes et al., 2016), application of grape pomace has been shown to exert a positive effect on animal products, such as improving the carcass parameters in chickens, oxidation stability and storage of meat products, egg production (Sahin et al., 2010; Karra and Kocaoglu-Gucu, 2012; Karra et al., 2016), and in raw-cooked meat products (Özvural and Vural, 2011; Özvural and Vural, 2013; Ryu et al., 2014).

The present study aimed to determine the effect of GSE application on quality (oxidative stability, sensory quality) of raw-cooked meat products (Spiš frankfurters) stored at 4 °C.

MATERIAL AND METHODOLOGY

The tested raw-cooked meat products (Spiš frankfurters) were made from pork meat and additional raw materials purchased at a market and processed according to the recipe for the product type (Table 1). Three groups of meat products were evaluated. The groups were formed on the basis of various additions of GSE during the mixing in a bowl cutter, as follows:

• control group (C),
• experimental group 1 (E1): 10 ml of GSE Blauburger and Cabernet Sauvignon per 1 kg of meat mixture,
• experimental group 2 (E2): 10 ml of GSE Dunaj per 1 kg of meat mixture.

The GSE-treated meat product was smoked and heat-treated (temperature in a product core reached 70 °C and persisted for 10 min). After the heat-treatment, the product was cooled to 4 °C. Meat samples were stored at 4 ±1 °C during the experimental period (12 days).

Preparation of grape seed extract

Extraction of grape seeds was carried according to Shirahigue et al. (2010). The homogenized grape seeds (20 g) were mixed with 100 mL of 80% ethanol in a laboratory shaker in the dark and at room temperature for 24 hours. Subsequently, the liquid phase was separated from the solid phase by filtration and added into volumetric flask. The 80% ethanol was then added until a total volume of 100 mL. After that, the liquid fraction was evaporated in the vacuum rotary evaporator at 65 °C. The dry residue was weighed and redissolved in 50 mL of distilled water. The extract was then applied into raw-cooked meat product in an amount of 10 mL per 1 kg of raw material.

Assessment of antioxidant activity (AOA) with DPPH radical

The DPPH (2,2-diphenyl-1-picrylhydrazyl) inhibition in GSE according to method of Brand-Williams et al. (1995). The DPPH radical is used to quantify the ability of antioxidants to quench the DPPH radical. The dark purple colour of DPPH will be lost when it is reduced to its nonradical form stable organic nitrogen centre free radical with a dark purple colour which when reduced to its nonradical form by antioxidants becomes colourless. When the DPPH radical is scavenged, the colour of the reaction mixture changes from purple to yellow and decrease of the DPPH radical is measured spectrophotometrically. On the determination of AOA was used which in ethanol solution is in colourless radical form. Its reduction is manifested by the change of colour of solution and is measured spectrophotometrically. Gallate was used as standard and the amount of AOA sample expressed as gallate equivalent was calculated.

Determination of the oxidative stability

During four storage times (day 1, 4, 8, and 12), oxidative stability of meat product samples was determined according to Marcínčák et al. (2010). The method is based on the rupture of lipid bilayer by free radical to form malondialdehyde (MDA) as a secondary product. Two molecules of thiobarbituric acid react with one molecule of MDA to form pink coloured product showing maximum absorbance at 532 nm called TBARS. The absorbance was measured using UV spectrophotometer (Jenway UV-VIS Spectrophotometer). The results were calculated as malondialdehyde (MDA) quantity per 1 g of sample.

Sensory evaluation

Sensory quality of raw-cooked meat products (n = 9) after cooking (80 °C, 5 min) was assessed by five-member panel on the 4th day after processing. Sensory characteristics of meat products including surface appearance and colour, appearance and colour in cross-section, texture, aroma, and taste on a six-point hedonic scale (6 = very good, 1 = very bad).

Results of the experiment were evaluated with statistical program Statgraphics Plus version 5.1 (AV Trading Umex, Dresden, Germany), were calculated variation-statistical values (mean, standard deviation) and to determine the

Table 1 Composition of meat product (g).

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork meat</td>
<td>1000</td>
</tr>
<tr>
<td>Water</td>
<td>200</td>
</tr>
<tr>
<td>Curing salt</td>
<td>18</td>
</tr>
<tr>
<td>Garlic (Allium sativum)</td>
<td>0.5</td>
</tr>
<tr>
<td>Red pepper (Capsicum annuum)</td>
<td>6.2</td>
</tr>
<tr>
<td>Chilli pepper (Capsicum frutescens)</td>
<td>6.2</td>
</tr>
<tr>
<td>Polyphosphate</td>
<td>7</td>
</tr>
</tbody>
</table>
significant difference between groups was used variance analysis with subsequent Scheffe test.

RESULTS AND DISCUSSION
Antioxidant activity assessment of applied grape seed extracts of different grape varieties is shown in Table 2. In Blauburger and Cabernet Sauvignon grape varieties applied in E1 group was observed higher antioxidant activity (100.5%) than that in Cabernet Sauvignon grape variety (55.8%). Similarly, Slezák (2007), Bajčan et al. (2015), and Špakovská et al. (2012) found AA in the range of 69 – 90.9% in red wine grape varieties. In addition, similar AA values (61.4 – 87.1%) found Beshbishy et al. (2009) in red grape seed extracts.

Oxidation of meat lipids is a complex process and its dynamics depend on numerous factors including chemical composition of meat, light and oxygen access, and storage temperature. The manufacturing processes of meat products cause degradation of the muscle membrane system and have a strong impact on the oxidation of intracellular fat, primarily phospholipids (Marcinčák et al., 2010; Karakaya et al., 2011). Thermal treatment makes oxidative processes faster, what significantly changes the value of thiobarbituric acid. The level of oxidative damage of lipids in the manufacture and storage changes the value of thiobarbituric acid. The level of antioxidant activity assessment of applied grape seed extracts of different grape varieties is shown in Table 2. In Blauburger and Cabernet Sauvignon grape varieties applied in E1 group was observed higher antioxidant activity (100.5%) than that in Cabernet Sauvignon grape variety (55.8%). Similarly, Slezák (2007), Bajčan et al. (2015), and Špakovská et al. (2012) found AA in the range of 69 – 90.9% in red wine grape varieties. In addition, similar AA values (61.4 – 87.1%) found Beshbishy et al. (2009) in red grape seed extracts.

Table 2 Antioxidant activity (AA) of grape seed extracts of different grape varieties (%). Values are given as mean ±SD.

<table>
<thead>
<tr>
<th>Grape variety</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blauburger and Cabernet Sauvignon</td>
<td>100.5 ±0.7</td>
</tr>
<tr>
<td>Dunaj</td>
<td>55.8 ±0.8</td>
</tr>
</tbody>
</table>

Note: mean – average; SD – standard deviation.

Table 3 Values of thiobarbituric number during the storage expressed as MDA (mg.kg⁻¹). Values are given as mean ±SD.

<table>
<thead>
<tr>
<th>Storage time</th>
<th>C</th>
<th>Group E1</th>
<th>Group E2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0.107 ±0.007</td>
<td>0.097 ±0.006</td>
<td>0.102 ±0.005</td>
<td>0.086</td>
</tr>
<tr>
<td>Day 4</td>
<td>0.122 ±0.013</td>
<td>0.107 ±0.011</td>
<td>0.116 ±0.008</td>
<td>0.185</td>
</tr>
<tr>
<td>Day 8</td>
<td>0.179 ±0.011</td>
<td>0.158 ±0.019</td>
<td>0.170 ±0.005</td>
<td>0.139</td>
</tr>
<tr>
<td>Day 12</td>
<td>0.221 ±0.015⁵</td>
<td>0.192 ±0.010⁶</td>
<td>0.207 ±0.014⁶</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Note: MDA – malondialdeyde; C – control group; E1, E2 – experimental groups; a, b – means within a row with different superscripts differ significantly at p ≤0.05; mean – average; SD – standard deviation.

Table 4 Sensory evaluation of raw-cooked meat products. Values are given as mean ±SD.

<table>
<thead>
<tr>
<th>Sensory characteristic</th>
<th>C</th>
<th>Group E1</th>
<th>Group E2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface appearance and colour</td>
<td>5.40 ±0.490</td>
<td>5.20 ±0.510</td>
<td>5.40 ±0.800</td>
<td>0.587</td>
</tr>
<tr>
<td>Appearance and colour in cross-section</td>
<td>5.60 ±0.374</td>
<td>5.40 ±0.374</td>
<td>5.40 ±0.374</td>
<td>0.471</td>
</tr>
<tr>
<td>Texture</td>
<td>5.80 ±0.400</td>
<td>5.50 ±0.775</td>
<td>5.50 ±0.447</td>
<td>0.347</td>
</tr>
<tr>
<td>Aroma</td>
<td>5.70 ±0.400</td>
<td>5.50 ±0.447</td>
<td>5.60 ±0.490</td>
<td>0.524</td>
</tr>
<tr>
<td>Taste</td>
<td>5.50 ±0.447</td>
<td>5.40 ±0.374</td>
<td>5.50 ±0.447</td>
<td>0.740</td>
</tr>
</tbody>
</table>

Note: C – control group; E1, E2 – experimental groups.
CONCLUSION
It can be concluded that the sensory quality was not significantly (p > 0.05) affected by application of extracts from grape seeds (Blauburger + Cabernet Sauvignon and Danube) in amount 10 ml.kg-1 of produced spiske sausages. Oxidation stability of Spíš frankfurters after 12 days of storage at 4 °C was positively influenced (p < 0.05) only in the group with addition of extract made from grape seed Blauburger + Cabernet Sauvignon. This may probably related with the higher antioxidant activity of extract of this variety (100.5%) compared to an extract made from grape seed variety of Danube (55.8%).

REFERENCES


PMid:11252483


PMid:21232878


PMid:24122825


PMid:26760939


PMid:20460666


PMid:1290586


Acknowledgments:

This work was supported by grants VEGA No. 1/0147/17 and 1/0139/17.

Contact address:

Ing. Marek Bobko, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Products Evaluation and Processing. Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: marek.bobko@uniag.sk

doc. Ing. Peter Haščík, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Products Evaluation and Processing. Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: peter.hascik@uniag.sk

Ing. Miroslav Kročko, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Products Evaluation and Processing. Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: mikrokroc@yahoo.com

Ing. Lenka Trembecká, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Products Evaluation and Processing. Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: xtrembecka@uniag.sk

Ing. Andrea Mendelová, PhD. Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Storing and Processing of Plant Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: andreamendelova@uniag.sk

Ing. Peter Czako, PhD. Chateau Malanta, Agátová 28, 95101, Nitrianske Hrnčiarovce E-mail: chateaulantala@gmail.com

Ing. Jana Tkáčová, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Animal Products Evaluation and Processing. Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: jana.tkacova@uniag.sk

doc. RNDr. Ing. Tomáš Tóth, PhD., Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, E-mail: tomas.toth@uniag.sk