Bioinformatics analysis of aflatoxins produced by Aspregillus sp. in basic consumer grain (corn and rice) in Saudi Arabia

Authors

  • Latifa Al Husnan Princess Noruah bint Abdulrahman University (PNU), Faculty of Science, Biology department, Riyadh, Kingdom of Saudi Arabia (KSA), Tel.: +966-504207002
  • Muneera Al Kahtani Princess Noruah bint Abdulrahman University (PNU), Faculty of Science, Biology department, Riyadh, Kingdom of Saudi Arabia (KSA), Tel.: + 966- 504110897
  • Randa Mohamed Farag Princess Nourah bint Abdulrahman University (PNU), Health Sciences Research Center (HSCR), Riyadh, Kingdom Saudi Arabia (KSA), Tel.: +966-54-0672520

DOI:

https://doi.org/10.5219/1020

Keywords:

PCR, Sequences, Phylogenetic tree, Protein toxin gene, antigenic determinants

Abstract

The food contaminants by aflatoxins are inevitable even when all precautions and good agricultural practices are applied. Samples of white rice and corn (yellow, red) grains were collected from different local markets and houses. Three Aspergillus flavus strain isolated were identified using molecular characterization of AFLR (aflR) toxin gene. DNA genome of the three A. flavus isolates (namely A. flavus _ YC; A. flavus _ RC; A. flavus _ Rice) which corresponds to isolates from, yellow corn, red corn and white rice respectively were used as a template for PCR to amplify Aspergillus flavus AFLR (aflR) toxin gene. Partially sequenced was amplified using a specific primer set to confirm its identity, phylogenetic relationships between the three isolates as well as determination of the corresponding antigenic determinants. The epitope prediction analysis demonstrated that there were 1, 2, 3 and 4 epitopes whose score were equal 1 in A. flavus _ YC; A. flavus _ RC; A. flavus _ Rice, respectively. Interestingly, there were great dissimilarity in the epitope sequences among the three isolates except in RLQEGGDDAAGIPA, SPPPPVETQGLGGD, RPSESLPSARSEQG and PAHNTYSTPHAHTQ were found to be similar between all isolates. This work articulates that the molecular identification and characterization of three A. flavus using Aspergillus flavus AFLR (aflR) toxin gene and the unique antigenic determinants that could be used for design of a broad-spectrum antibody for rapid detection of A. flavus in foods and support quality system of food safety.

Downloads

Download data is not yet available.

References

Aamot, H. U., Ward, T. J., Brodal, G., Vrålstad, T., Larsen, G. B., Klemsdal, S. S., Elameen, A., Uhlig, S., Hofgaard, I. S. 2015. Genetic and phenotypic diversity within the Fusarium graminearum species complex in Norway. European Journal of Plant Pathology, vol. 142, no. 3, p. 501-519. https://doi.org/10.1007/s10658-015-0629-4

Abbas, H. K., Reddy, R. N., Salleh, B., Saad, B., Abel, C. A., Shier, W. T. 2010. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews, vol. 29, no. 1, p. 3-26. https://doi.org/10.3109/15569541003598553

Abd-Allah, E. F., Ezzat, S. M. 2005. Natural occurrence of citrinin in rice grains and its biocontrol by Trichoderma hamatum. Phytoparasitica; vol. 33, no. 1, p. 73-84. https://doi.org/10.1007/BF02980928

Abdel-Fatah, Sh. M., Noah Badr, A., Abu Sree, Y. H., Amar, H. A. 2017. Mycotoxigenic Fungi and Mycotoxins in Egyptian Barley under Climate Changes. Research J. Environm. Toxico. vol.11 no. 1, p. 1-10.

Abdel-Wahhab, M. A., Ahmed, H. H., Hagazi, M. M. 2006. Prevention of aflatoxin B1-initiated hepatotoxicity in rat by marine algae extracts. J. Appl. Toxicol., vol. 26, no. 3, p. 229-238. https://doi.org/10.1002/jat.1127

Abdulkadar, A. H. W., Al-Ali, A. A., Al-Kildi, A. M., Al-Jedah, J. H. 2004. Mycotoxins in food products available in Qatar. Food Control, vol. 15, no. 7, p. 543-548. https://doi.org/10.1016/j.foodcont.2003.08.008

Abou-Zeid, A., Metwally, M., Farid, B. 1997. Physiological and hepatotoxic studies on fungal aflatoxin isolated from Egyptian cereals. Egyptian Journal of Microbiology, vol. 32, no. 1, p. 83-98.

Aftabuddin, M., Kundu, S. 2007. Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys. J., vol. 93, no. 1, p. 225-231. https://doi.org/10.1529/biophysj.106.098004

Alam, M., Chamhuri, S., Basri, T., Mazlin, M., Mohd, E. T. 2015. Climate change adaptation policy in Malaysia: Issues for agricultural sector. Braz. J. Microbiol., vol. 46 no. 2, p. 337-346. https://doi.org/10.5897/AJARX11.030

Alizadeh, A. M., Rohandel, G., Roudbarmohammadi, S., Roudbary, M., Sohanaki, H., Ghiasian, S. A., Taherkhani, A., Semnani, S., Aghasi, M. 2012. Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high-risk area in northeastern Iran. Asian Pac. J. Cancer Prev., vol. 13, no. 6, p. 2625-2628. https://doi.org/10.7314/APJCP.2012.13.6.2625

Ariño, A., Juan, T., Estopañan, G., González-Cabo, J. F. 2007. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B-1 and B-2 in conventional and organic maize grown in Spain. Journal of Food Protection vol. 2007, no. 70, p. 151-156. https://doi.org/10.4315/0362-028X-70.1.151

Ashiq, S. 2015. Natural occurrence of Mycotoxins in Food and Feed: Pakistan Perspective. Comprehensive Reviews in food science and food safety, vol. 14, no. 2, p. 159-175. https://doi.org/10.1111/1541-4337.12122

Bhat, R., Rai, R. V., Karim, A. A. 2010. Mycotoxins in Food and Feed: Present Status and Future Concerns. Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 1, p. 57-81. https://doi.org/10.1111/j.1541-4337.2009.00094.x

Bhatnagar, D. K., Ehrlich, C., Cleveland, T. E. 2003. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol., vol. 61, no. 2, p. 83-93. https://doi.org/10.1007/s00253-002-1199-x

Bhatnagar, D., Cary, J. W., Ehrlich, K., Yu, J., Cleveland, T. E. 2006. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathologia; vol. 162, no. 3, p. 255-266. https://doi.org/10.1007/s11046-006-0050-9

Bilodeau, G. J. 2011. Quantitative polymerase chain reaction for the detection of organisms in soil. CAB Rev: Perspect Agr., Vet. Sci., Nutr. Natl. Res., vol. 6, no. 14, p. 1-14. https://doi.org/10.1079/PAVSNNR20116014

Bok, J. W., Keller, N. P. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell, vol. 3, no. 2, p. 527-535. https://doi.org/10.1128/EC.3.2.527-535.2004

Boutigny, A. L., Beukes, I., Small, I., Zühlke, S., Spiteller, M., Van Rensburg, B. J., Flett, B., Viljoen, A. 2012. Quantitative detection of Fusarium pathogens and their mycotoxins in South African maize. Plant Pathol., vol. 61, no. 3, p. 522-531. https://doi.org/10.1111/j.1365-3059.2011.02544.x

Brožková, I., Šmahová, P., Vytřasová, J., Moťková, P., Pejchalová, M., Šilha, D. 2015. Influence of chosen microbes and some chemical substances on the production of aflatoxins. Potravinarstvo, vol. 9, no. 1, p. 9-17. https://doi.org/10.5219/416

Caldas, W., Silva, S., Oliveira, J. 2002. Aflatoxinase e ocratoxina a emalimentos e riscos para a saude humana. (Aflatoxins and ochratoxin A in food and the risks to human health). Revista de Saude Publica, vol. 36, no. 3, p. 31932. https://doi.org/10.1590/S0034-89102002000300010

Cary, J. W., Ehrlich, K. C., Wright, M., Chang, P. K., Bhatnagar, D. 2000. Generation of aflR disruption mutants of Aspergillus parasiticus. Appl. Microbiol. Biotechnol., vol. 53, no. 6, p. 680-684. https://doi.org/10.1007/s002530000319

Cendoya, E., Monge, M. P., Palacios, S. A., Chiacchiera, S. M., Torres, A. M., Farnochi, M. C., Ramirez, M. L. 2014. Fumonisin occurrence in naturally contaminated wheat grain harvested in Argentina. Food Control, vol. 37, p. 56-61. https://doi.org/10.1016/j.foodcont.2013.09.031

Chandelier, A., Planchon, V., Oger, R. 2010. Determination of cycle cut off in real-time PCR for the detection of regulated plant pathogens. Bull. OEPP., vol. 40, no. 1, p. 52-58. https://doi.org/10.1111/j.1365-2338.2009.02354.x

Chen, R. S., Tsay, J. G., Huang, Y. F., Chiou, R. Y. 2002. Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction. J. Food. Prot., vol. 65, no. 5, p. 840-844. https://doi.org/10.4315/0362-028X-65.5.840

Covarelli, L., Beccari, G., Prodi, A., Generotti, S., Etruschi, F., Juan, C., Ferrer, E., Mañes, J. 2015. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. Journal of the Science of Food and Agriculture, vol. 95, no. 3, p. 540-551. https://doi.org/10.1002/jsfa.6772

Creepy, E. E. 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, vol. 127, no, 1-3, p. 19-28.

de Souza, M. P., Bittencourt, M. L., Canielles, C., Marcela, F. R., Renata, P. A., Dâmaris, S., Pérola, O. Magalhães. 2005. A biotechnology perspective of fungal proteases. African Journal of Agricultural Research, vol. 7, no. 9, p. 1368-1373, https://doi.org/10.1590/S1517-838246220140359

Dean, R., Van Kan, J. A. L., Pretorius, Z. A. 2012. The Top10 fungal pathogens in molecular plant pathology. Mol. Plant. Pathol., vol. 13, no. 4, p. 410-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

Degola, F., Berni, E., Dall'Asta, C., Spotti, E., Marchelli, R., Ferrero, I., Restivo, F. M. 2007. A multiplex RT-PCR approach to detect aflatoxingenic strains of Aspergillus flavus. J Appl Microbiol., vol. 203, no. 2, p. 409-427. https://doi.org/10.1111/j.1365-2672.2006.03256.x

Duan. C., Wang, X., Zhen-dong, Z. H. U., WU, X. 2007. Testing of Seedborne Fungi in Wheat Germplasm Conserved in the National Crop Genebank of China. Agric. Sci. China, vol. 6, no. 6, p. 682-687. https://doi.org/10.1016/S1671-2927(07)60100-X

Ehrlich, K. C., Montalbano, B. G., Cotty, P. J. 2003. Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genet. Biol., vol. 38, no. 1, p. 63-74.

El-Manzalawy, Y., Dobbs, D., Honavar, V. 2008a. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit., vol. 21, no. 4, p. 243-255. https://doi.org/10.1002/jmr.893

El-Manzalawy, Y., Dobbs, D., Honavar, V. 2008b. Predicting flexible length linear B-cell epitopes. Comput. Syst. Bioinformatics Conf., vol. 7, p. 121-32. https://doi.org/10.1142/9781848162648_0011

El-Sayed, A. M. A. A. 1996. Natural occurrence of ochratoxin A and citrinin in food stuffs in Egypt. Mycotoxin Res., vol. 12, no. 1, p. 41-4. https://doi.org/10.1007/BF03192079

Fatah, S. I. A. E., Naguib, M. M., El-Hossiny, E. N., Sultan, Y., Abodalam, Y., Yli-Mattila, T. 2015. Molecular versus Morphological Identification of Fusarium spp. isolated from Egyptian corn. Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 6, no. 4, p. 1813-1822.

Fox, E. M., Howlett, B. J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol., vol. 11, no. 6, p. 481-487. https://doi.org/10.1016/j.mib.2008.10.007

Frisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., Houbraken, J. 2019. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol., vol. 93, p. 1-63. https://doi.org/10.1016/j.simyco.2018.06.001

Fung, F., Clark, R. 2004. Health effects of mycotoxins: a toxicological overview. J. Toxicol. Clin. Toxicol., vol. 42, no. 2, p. 217-34. https://doi.org/10.1081/CLT-120030947

Geiser, D. M., Klich, M. A., Frisvad, J. C., Peterson, S. W., Varga, J., Samson, R. A. 2007. The current status of species recognition and identification in Aspergillus. Stud. Mycol., vol. 59, p. 1-10. https://doi.org/10.3114/sim.2007.59.01

Hussein, H. S., Brasel, J. M. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, vol. 167, no. 2, p. 101-134.

Hussien, T., Carlobos Lopez, A. L., Chris, T., Cumagum, J. C., Yli-Mattila, T. 2017. Identification and quantification of fumonisin-producing Fusarium species in grain and soil samples from Egypt and the Philippines. Phytopathologia Mediterranea, vol. 56, no. 1, p. 146-153. https://doi.org/10.14601/Phytopathol_Mediterr-20294

Ibrahim, T. F., El-Abedeen, A. Z., El-Morsy, G. A., El-Azhary, T. M. 1998. Aflatoxins in Egyptian sorghum grains: detection and estimation. J. Agric. Res., vol. 76, p. 923-931.

Ito, T., Matsui, Y., Ago, T, Ota, K., Sumimoto, H. 2001. Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J. vol. 20, no. 15, p 3938-3946. https://doi.org/10.1093/emboj/20.15.3938

Juan, C., Zinedine, A., Molto, J.C., Idrissi, L., Manes, J. 2008. Aflatoxins levels in dried fruits and nuts from Rabat-sale area, Morocco. Food Control, vol. 19, p. 849-853. https://doi.org/10.1016/j.foodcont.2007.08.010

Kachapulula, P. W., Akello, J., Bandyopadhyay, R., Cotty, P. J. 2017. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Int. J. Food Microbiol., vol. 16, no. 261, p. 49-56. https://doi.org/10.1016/j.ijfoodmicro.2017.08.014

Kolaskar, A. S., Tongaonkar, P. C. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., vol. 276, no. 1-2, p. 172-174. https://doi.org/10.1016/0014-5793(90)80535-Q

Kovacs, M. 2004. Nutritional health aspects of mycotoxins. Orvosi Hetilap, vol. 145, no. 34, p. 1739-1746.

Kumar, V., Basu, M. S., Rajendran, T. P. 2008. Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop protection, vol. 27, no. 6, p. 891-905. https://doi.org/10.1016/j.cropro.2007.12.011

Leach, J. E., White, F. F., Rhoads, M. L., Leung, H. 1990. A Repetitive DNA Sequence Differentiates Xanthomonas campestris pv. oryzae from Other Pathovars of X. campestris. Mol. Plant-Microbe Interact., vol. 3, no. 4, p. 238. https://doi.org/10.1094/MPMI-3-238

Lee, T., Lee, S. H., Shin, J. Y., Yun, J. C., Lee, Y. W., Ryu, J. G. 2011. Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J Food Prot., vol. 74, no. 7, p. 1169-1174. https://doi.org/10.4315/0362-028X.JFP-10-564

Leslie, J. F., Summerell, B. A., Bullock, S. 2006. The Fusarium Laboratory Manual. Ames, Lowa, USA : Black well professional publishing, 388 p. ISBN: 978-0-813-81919-8. https://doi.org/10.1002/9780470278376

Lorè, A., Spadaro, D., Garibaldi, A., Gullino, M. L. 2011. Assessment of the contamination of rice grains in Piedmont by trichothecenes. Protezione delle Colture, vol. 2, p. 105-106.

Mahmoud, M. A., Al-Othman, M. R., Abd El-Aziz, A. R. M. A. 2013. Mycotoxigenic fungi contaminating corn and sorghum grains in Saudi Arabia. Pakistan J. Bot., vol. 45, no. 5, p. 1831-1839.

Makun, H. A., Gbodi, T. A., Akanya, O. H., Salako, E. A., Ogbadu, G. H. 2007. Fungi and some mycotoxins contaminating rice (Oryza sativa) in Niger State, Nigeria. Afr. J. Biotech., vol. 6, no. 2, p. 99-108.

Mwanza, M., Ndou, R. V., Dzoma, B., Nyirenda, M., Bakunzi, F. 2013. Canine aflatoxicosis outbreak in South Africa (2011): a possible multi-mycotoxins aetiology. J. S. Afr. Vet. Assoc., vol. 84, no. 1, p. E1-5.

National Library of Medicine. 2014. Basic Local Alignment Search Tool [online] s.a. [cit. 2019-01-18] Available at: http://blast.ncbi.nlm.nih.gov/

Neergaard, P. 1977. Seed pathology, vol. 1-2. Palgrave, London : MacMillan Press. ISBN: 978-1-349-02844-3. https://doi.org/10.1007/978-1-349-02842-9

Niessen, L. 2007. PCR-based diagnosis and quantification of. mycotoxin producing fungi. Int. J. Food Microbiol., vol. 119, no. 1-2, p. 38-46. https://doi.org/10.1016/j.ijfoodmicro.2007.07.023

Osman, N. A., Abdelgadir, A. M., Moss, M. O., Bener, A. 1999. Aflatoxin contamination of rice in the United Arab Emirates. Mycotoxin Res., vol. 15, no. 1, p. 39-44. https://doi.org/10.1007/BF02945213

Park, J. W., Choi, S. Y., Hwang, H. J., Kim, Y. B. 2005. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int. J. Food Microbiol., vol. 103, no. 3, p. 305-14. https://doi.org/10.1016/j.ijfoodmicro.2005.02.001 .

Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A. L., Chrpová, J., Czembor, E., Gagkaeva, T., González-Jaén, M. T., Vogelgsang, S. A. 2016. European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Frontiers in MicroBiology; vol. 7, p. 406. https://doi.org/10.3389/fmicb.2016.00406

Passone, M. A., Rosso, L. C., Etcheverry, M. 2010. Detection and quantification of Aspergillus section flavi spp. in stored peanuts by real-time PCR of nor-1 gene, and effects of storage conditions on aflatoxin production. International Journal of Food Microbiology, vol. 138, no. 3, p. 276-281. https://doi.org/10.1016/j.ijfoodmicro.2010.01.003

Peraica, M., Rašić, D. 2012. The impact of mycotoxicoses on human history. Arh. Hig. Rada. Toksikol., vol. 63, no. 4, p. 513-518. https://doi.org/10.2478/10004-1254-63-2012-2259

Pitt, J. I. 2000a. Toxigenic fungi and mycotoxins. Br. Med. Bull., vol. 56, no. 1, p. 184-92. https://doi.org/10.1258/0007142001902888

Pitt, J. I. 2000b. Toxigenic fungi: which are important? Med. Mycol., vol. 38, p. 17-22. https://doi.org/10.1080/mmy.38.s1.17.22

Probst, C., Bandyopadhyay, R., Cotty, P. J. 2014. Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. Int J Food Microbiol., vol. 17, no. 174, p. 113-22. https://doi.org/10.1016/j.ijfoodmicro.2013.12.010

Qiu, J. Shi, J. 2014. Genetic relationships, Carbendazim sensitivity and mycotoxin production of the Fusarium graminearumpopulations from maize, wheat and rice in eastern China. Toxins, vol. 6, no. 8, p. 2291-2309. https://doi.org/10.3390/toxins6082291

Reddy, K. R. N., Salleh, B., Saad, B., Abbas, H. K., Abel, C. A., Shier, W. T. 2010. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev., vol. 29, no. 1, p. 3-26. https://doi.org/10.3109/15569541003598553

Richard, E., Heutte, N., Sage, L., Pottier, D., Bouchart, V., Lebailly, P., Garon, D. 2007. Toxigenic fungi and mycotoxins in mature corn silage. Food Chem. Toxicol., vol. 45, no. 12, p. 2420-2425. https://doi.org/10.1016/j.fct.2007.06.018

Sambrook, J., Fritsch, E., Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York, USA : Cold Spring Harbor Laboratory Press. 2028 p. ISBN-10: 0879693096.

Samina, A. 2015. Natural occurrence of Mycotoxins in Food and Feed:Pqkistan Perspective. Comprehensive Reviews in food science and food safty, vol. 1-4, no. 2, p. 159-175.

Sánchez-Hervás, M., Gil, J. V., Bisbal, F., Ramón, D., Martínez-Culebras, P. V. 2008. Mycobiota and mycotoxin producing fungi from cocoa beans. Int. J. Food Microbiol., vol. 125, no. 3, p. 336-340. https://doi.org/10.1016/j.ijfoodmicro.2008.04.021

Scauflaire, J., Mahieu, O., Louvieaux, J., Foucart, G., Renard, F., Munaut, F. 2011. Biodiversity of Fusarium species in ears and stalks of maize plants in Belgium. European Journal of Plant Pathology, vol. 131, p. 59-66. https://doi.org/10.1007/s10658-011-9787-1

Schmidt-Heydt, M. Geisen, R. 2007. A microarray for monitoring the production of mycotoxins in food. Int J Food Microbiol., vol. 117, no. 2, p. 131-140. https://doi.org/10.1016/j.ijfoodmicro.2007.01.014

Sette, A., Fikes, J. 2003. Epitope-based vaccines: An update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol., vol. 15, no. 4, p. 461-470.

Shephard, G. S. 2008.Impact of mycotoxins on human health in developing countries. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., vol. 25, no. 2, p. 146-51. https://doi.org/10.1080/02652030701567442

Singh, P., Cotty, P. J. 2019. Characterization of Aspergilli from dried red chilies (Capsicum spp.): Insights into the etiology of aflatoxin contamination. Int J Food Microbiol., vol. 16, no. 289, p. 145-153. https://doi.org/10.1016/j.ijfoodmicro.2018.08.025

Spröte, P., Brakhage, A. A., Hynes, M. J. 2009. Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell., vol. 8, no.3, p. 421-430. https://doi.org/10.1128/EC.00374-08

Suga, H., Galel, H. C. 2007. Development of VNTR markers for two Fusarium graminearum clade species. Microbiology, vol. 153 no. 6, p. 1677-1692. https://doi.org/10.1111/j.1471-8286.2004.00703.x

Taha, K. K., Elmahi, E. R., Hassan, H., Ahmed, S. E., Shyou, M. H. 2012. Analytical Study On Three Types Of Gum From Suda. Journal of Forest Products & Industries, vol. 1, no. 1, p. 11-16.

Taligoola, H. K., Ismail, M. A., Chebon, S. K. 2011. Mycobiota and aflatoxins associated with imported rice grains stored in Uganda. Czech Mycol., vol. 63, no. 1, p. 93-107.

Voss, K. A., Riley, R. T., Gelineau-van, Waes. J. 2014. Fumonisin B1 induced neural tube defects were not increased in LM/Bc mice fed folate-deficient diet. Mol. Nutr. Food Res., vol. 58, no. 6, p. 1190-1198. https://doi.org/10.1002/mnfr.201300720

Yassin, M. A., El-Samawaty, A. R., Bahkali, A., Moslem, M., Abd-Elsalam, K. A., Hyde, K. D. 2010. Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers, vol. 44, no. 1, p. 45-52. https://doi.org/10.1007/s13225-010-0058-9

Zhang, J. W., Mine, Y. 2002. Identification and fine mapping of IgG and IgE epitopes in ovomucoid. Biochem. Biophys. Res. Commun., vol. 292, no. 4, p. 1070-1074. https://doi.org/10.1006/bbrc.2002.6725

Published

2019-02-15

How to Cite

Husnan, L. A. ., Kahtani, M. A. ., & Farag, R. M. (2019). Bioinformatics analysis of aflatoxins produced by Aspregillus sp. in basic consumer grain (corn and rice) in Saudi Arabia. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 65–75. https://doi.org/10.5219/1020