Is edible insect as a novel food digestible?


  • Martin Adámek Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Technická 3058/10, 616 00 Brno, Czech Republic, Tel.: +420541146136
  • Jiří­ Mlček Tomas Bata University in Zlin, Faculty of Technology, Department of Food Analysis and Chemistry, Vavreckova 275, 760 01 Zlin, Czech Republic, Tel.: +420576033030
  • Anna Adámková Tomas Bata University in Zlin, Faculty of Technology, Department of Food Analysis and Chemistry, Vavreckova 275, 760 01 Zlin, Czech Republic, Tel.: +420576031592
  • Marie Borkovcová Tomas Bata University in Zlin, Faculty of Technology, Department of Food Analysis and Chemistry, Vavreckova 275, 760 01 Zlin, Czech Republic, Tel.: +420 545 133 356
  • Martina Bednářová Mendel University in Brno, Department of Information Technology, Zemědělská 1, 613 00 Brno, Czech Republic, Tel.: +420545132736
  • Tünde Jurí­ková Constantine the Philosopher University in Nitra, Faculty of Central European Studies, Institute for teacher training, 949 74 Nitra, Slovakia, Tel.: +421376408855
  • Zuzana Musilová Tomas Bata University in Zlin, Faculty of Technology, Department of Food Analysis and Chemistry, Vavreckova 275, 760 01 Zlin, Czech Republic
  • Oldřich Faměra Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Food Science, Kamýcká 129, 165 21 Praha 6 ”“ Suchdol, Czech Republic, Tel.: +420224383508



digestibility, mealworm, culinary treatments, enzymes, nitrogenous substances


This work deals with the digestibility of a selected species of edible insect - mealworm (larvae) as novel food in dependency on its culinary treatment. The aim of this work was to find suitable thermic culinary treatment of mealworm larvae considering its optimum digestibility by human. The digestibility of materials from whole insect and extracted nitrogenous substances was determined using three different culinary treatments - without culinary treatment (freshly killed), dried insect and roasted insect. The digestibility was determined by gravimetric in vitro method using pepsin and pancreatin enzymes and their combination. The total nitrogen content of the insect samples was determined by the Kjeldahl method. The digestibility of the whole homogenized larvae using the combination of pepsin and pancreatin enzymes, thus simulating human digestion in-vitro, ranged from 81% for roasted specimens to 91.5% for culinary unprocessed insect. Similarly, the digestibility of nitrogenous substances of homogenized insect samples using this combination of enzymes ranged from 24.2% for roasted specimens to 80.2% for culinary unprocessed samples. The work showed the dependence of the digestibility of the mealworm larvae on the culinary treatment - the increasing heat load of the sample reduced the digestibility. Furthermore, it proved the effect of the digestive enzyme on the digestibility of the insect sample.


Download data is not yet available.


Adámková, A. 2017. Nutriční rozbor a optimalizace chovu vybraných druhů jedlého hmyzu v podmínkách ČR s ohledem na zdraví člověka (Nutritional Analysis and Optimization of Breeding of Selected Insect Species in Conditions of the Czech Republic with Regard to Human Health) : dissertation theses. Prague, Czech Republic : Czech Agriculture university in Prague, Faculty of Agrobiology, Food and Natural Resources Department of Agricultural Product Quality. (In Czech)

Adámková, A., Kouřimská, L., Borkovcová, M., Kulma, M., Mlček, J. 2016. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo, vol. 10, no. 1, p. 663-671.

Bodwell, C. E., Satterlee, L. D., Hackler, L. R. 1980. Protein digestibility of the same protein preparations by human and rat assays and by in vitro enzymic digestion methods. The American journal of clinical nutrition, vol. 33, no. 3, p. 677-686.

Bognár, A. 1998. Comparative study of frying to other cooking techniques influence on the nutritive value. Grasas y Aceites, vol. 49, no. 3-4, p. 250-260.

Bosch, G., Zhang, S., Oonincx, D. G. A. B., Hendriks, W. H. 2014. Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, vol. 3.

Bussink, A. P., Speijer, D., Aerts, J. M., Boot, R. G. 2007. Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases. Genetics, vol. 177, no. 2, p. 959-970.

Caparros Megido, R., Desmedt, S., Blecker, C., Béra, F., Haubruge, É., Alabi, T., Francis, F. 2017. Microbiological load of edible insects found in Belgium. Insects, vol. 8, no. 1, p. 12.

De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L., Schiavone, A. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, vol. 209, p. 211-218.

El Hassan, N. M., Hamed, S. Y., Hassan, A. B., Eltayeb, M. M., Babiker, E. E. 2008. Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pakistan Journal of Nutrition, vol. 7, no. 2, p. 325-329.

Finot, P. A. 1983. Influence of processing on the nutritional value of proteins. Plant foods for human nutrition, vol. 32, no. 3-4, p. 439-453.

Grabowski, N. T., Klein, G. 2017. Microbiology of processed edible insect products – Results of a preliminary survey. International Journal of Food Microbiology, vol. 243, p. 103-107.

Guikema, J. W. 2004. Scanning hall probe microscopy of magnetic vortices in very underdoped yttrium-barium-cooper-oxide : dissertation theses. Serra Mall, Stanford, USA : Stanford University, 177 p.

Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., Nout, M. J. R. 2012. Microbiological aspects of processing and storage of edible insects. Food Control, vol. 26, no. 2, p. 628-631.

Marono, S., Piccolo, G., Loponte, R., Di Meo, C., Attia, Y. A., Nizza, A., Bovera, F. 2015. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Italian journal of animal science, vol. 14, no. 3, p. 338-343.

McCusker, S., Buff, P. R., Yu, Z., Fascetti, A. J. 2014. Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods. Journal of nutritional science, vol. 3, no. 3, p. e39.

Megido, R. C., Poelaert, C., Ernens, M., Liotta, M., Blecker, C., Danthine, S., Tyteca, E., Haubruge, É., Alabi, T., Bindelle, J., Francis, F. 2018. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, vol. 106, p. 503-508.

Mišurcová, L. 2008. Nové nutriční aspekty a využití mořských a sladkovodních řas ve výživě člověka (New nutritional aspects and use of seaweed and freshwater algae in human nutrition): dissertation theses. Zlín, Czech Republic: Tomas Bata University in Zlín, 120 p. (In Czech)

Mišurcová, L., Ambrožová, J., Samek, D. 2011. Seaweed lipids as nutraceuticals. Advances in food and nutrition research, vol. 64, p. 339-355.

Mišurcová, L., Kráčmar, S., Klejdus, B., Vacek, J. 2010. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech Journal of Food Sciences, vol. 28, no. 1, p. 27-35.

Mlček, J., Rop, O., Borkovcova, M., Bednarova, M. 2014. A comprehensive look at the possibilities of edible insects as food in Europe–a review. Polish Journal of Food and Nutrition Sciences, vol. 64, no. 3, p. 147-157.

Opstevedt, J., Nygård, E., Samuelsen, T. A., Venturini, G., Luzzana, U., Mundheim, H. 2003. Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. Journal of the Science Food and Agriculture, vol. 83, no. 8, p. 775-782.

Panini, R. L., Freitas, L. E. L., Guimarães, A. M., Rios, C., da Silva, M. F. O., Vieira, F. N., Fracalossi, D. M., Samuels R. I., Prudȇncio, E. S., Silva, C. P., Amboni, R. D. M. C. 2017. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture, vol. 473, p. 115-120.

Poelaert, C., Beckers, Y., Despret, X., Portetelle, D., Francis, F., Bindelle, J. 2016. In vitro evaluation of fermentation characteristics of two types of insects as potential novel protein feeds for pigs. Journal of Animal Science, vol. 94, no. 3, p. 198-201.

Svačina, Š. 2010. Metabolism and nutrition disorders (Poruchy metabolismu a výživy). 1st ed. Prague, Czech Republic : Galén, 505 p. ISBN: 978-7262. (In Czech)

Tan, H. S. G., van den Berg, E., Stieger, M. 2016. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food quality and preference, vol. 52, p. 222-231.

Vandeweyer, D., Lenaerts, S., Callens, A., Van Campenhout, L. 2017. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control, vol. 71, p. 311-314.

Yen, A. L. 2009. Edible insects: Traditional knowledge or western phobia? Journal of the Entomological Research Society, vol. 39, no. 5, p. 289-298.



How to Cite

Adámek, M. ., Mlček, J. ., Adámková, A. ., Borkovcová, M. ., Bednářová, M. ., Jurí­ková, T. ., Musilová, Z. ., & Faměra, O. (2019). Is edible insect as a novel food digestible?. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 470–476.

Most read articles by the same author(s)

1 2 3 4 > >>