Proteomic study of pig’s spleen

Authors

  • Ekaterina Romanovna Vasilevskaya V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia https://orcid.org/0000-0002-4752-3939
  • Anastasia Gennadievna Akhremko V. M. Gorbatov Federal Research Center for Food Systems of RAS, Experimental-clinical research laboratory of bioactive substances of animal origin, Talalikhina st., 26, 109316, Moscow, Russia, Tel.: +79152379497 https://orcid.org/0000-0002-0211-8171

DOI:

https://doi.org/10.5219/1093

Keywords:

spleen, two-dimensional electrophoresis, pork, proteomic

Abstract

This work is devoted to pig spleen proteome study. Spleens were taken from Duroc pigs (females, 145 - 160 days old) and typical two-dimensional electrophoregrams were obtained. On proteomic maps after visualization and image analysis there were detected 600 fractions, including organ-specific proteins - 3 62 fractions. Among the identified constitutive fractions, the highest expression was observed (Vol spots more than 3.0E + 07) four protein spots S1, S9, S12 and S21, which are supposedly Annexin A1 (MW 38.76 kDa), Ectonucleoside triphosphate diphosphohydrolase 1 (MW 57.75 kDa) Pro-cathepsin H CD59 (MW 37.45 kDa) and glycoprotein (MW 13.79 kDa), respectively. Obtained electrophoregrams analysis using information resources made it possible to identify different active compounds in spleen with various functions, mainly immunoregulatory - glycoprotein CD59 (Mm 13.79 kDa) and ATP-dependent RNA helicase (Mm 107.58 kDa); the intensely expressed LIM-domain of the actin-binding protein (Mm 83.99 kDa). The results obtained are a prospect for immunomodulating biologic development based on animal raw materials for farm animals.

Downloads

Download data is not yet available.

References

D'acquisto, F., Perretti, M., Flower, R. J. 2008. Annexin‐A1: a pivotal regulator of the innate and adaptive immune systems. British journal of pharmacology, vol. 155, no. 2, p. 152-169. https://doi.org/10.1038/bjp.2008.252

Gladue, D. P., Baker-Bransetter, R., Holinka, L. G., Fernandez-Sainz, I. J., O’Donnell, V., Fletcher, P., Zhiqiang Lu, Borca, M. V. 2014. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system. PLoS One, vol. 9, no. 1, p. e85324. https://doi.org/10.1371/journal.pone.0085324

Hirano, H. 1982. Varietal differences of leaf protein profiles in mulberry. Phytochemistry, vol. 21, no. 7, p. 1513-1518. https://doi.org/10.1016/S0031-9422(82)85008-5

Huang, J., Zhang, J., Lei, T., Chen, X., Zhang, Y., Zhou, L., Yu, A., Chen, Z., Zhou, R., Yang, Z. 2010. Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis. BMB reports, vol. 43, no. 7, p. 491-498. https://doi.org/10.5483/BMBRep.2010.43.7.491

Chen, X., Wang, X., Li, Z., Kong, L., Liu, G., Fu, J., Wang, A. 2012. Molecular cloning, tissue expression and protein structure prediction of the porcine 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Gene, vol. 495, no. 2, p. 170-177. https://doi.org/10.1016/j.gene.2011.12.051

Chernukha, I. M., Fedulova, L. V., Kotenkova, E. A., Shishkin, S. S., Kovalyov, L. I., Mashentseva, N. G., Klabukova, D. L. 2016. Influence of heat treatment on tissue specific proteins in the cardiac muscle and aorta sus scrofa. Russian Journal of Biopharmaceuticals, vol. 8, no. 6, p. 38-44.

Chernukha, I. M., Fedulova, L. V., Vasilevskaya, E. R., Kotenkova, E. A. 2017. Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products . Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 539-543. https://doi.org/10.5219/590

Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., Hirano, H. 2003. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, vol. 409, no. 2, p. 341-348. https://doi.org/10.1016/S0003-9861(02)00639-2

Kotenkova, E. A., Lukinova, E. A., Fedulova, L. V. 2017. Antimicrobial compounds of porcine mucosa. In IOP Conference Series: Earth and Environmental Science. vol. 85, no. 1, p. 012068. https://doi.org/10.1088/1755-1315/85/1/012068

Lemmens, R., Vanduffel, L., Kittel, A., Beaudoin, A. R., Benrezzak, O., Sévigny, J. 2000. Distribution, cloning, and characterization of porcine nucleoside triphosphate diphosphohydrolase‐1. European Journal of Biochemistry, vol. 267, no. 13, p. 4106-4114. https://doi.org/10.1046/j.1432-1327.2000.01462.x

Maher, S. E., Pflugh, D. L., Larsen, N. J., Rothschild, M. F., Bothwell, A. L. 1998. Structure/function characterization of porcine CD59: expression, chromosomal mapping, complement-inhibition, and costimulatory activity. Transplantation, vol. 66, no. 8, p. 1094-110. https://doi.org/10.1097/00007890-199810270-00021

Mora, L., Gallego, M., Toldrá, F. 2018. New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, vol 22, p. 22-27. https://doi.org/10.1016/j.cofs.2018.01.005

Ruiz‐Cortés, Z. T., Men, T., Palin, M. F., Downey, B. R., Lacroix, D. A., Murphy, B. D. 2000. Porcine leptin receptor: molecular structure and expression in the ovary. Molecular Reproduction and Development, vol. 56, no. 4, p. 465-474. https://doi.org/10.1002/1098-2795(200008)56:4<465::AID-MRD4>3.0.CO;2-Q

Swiss-Prot database. 2002. [online] s.a. [cit. 2019-01-18] Available at: https://www.uniprot.org/uniprot/?query=reviewed:yes

Wang, H., Wang, H., Zhu, Z., Yang, S., Feng, S., Li, K. 2007. Characterization of porcine EPLIN gene revealed distinct expression patterns for the two isoforms. Animal biotechnology, vol. 18, no. 2, p. 101-108. https://doi.org/10.1080/10495390600864660

Xie, L., Liu, M., Fang, L., Su, X., Cai, K., Wang, D., Chen, H. Xiao, S. 2010. Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING). Developmental & Comparative Immunology, vol. 34, no. 8, p. 847-854. https://doi.org/10.1016/j.dci.2010.03.005

Yang, W., Diehl, J. R., Roudebush, W. E. 2003. Organization of Porcine Platelet‐Activating Factor Receptor Gene. Animal biotechnology, vol. 14, no. 2, p. 177-181. https://doi.org/10.1081/ABIO-120026487

Yang, W., Diehl, J. R., Yerle, M., Ford, J. J., Christenson, R. K., Roudebush, W. E., Plummer, W. E. 2003. Chromosomal location, structure, and temporal expression of the platelet‐activating factor receptor (PAFr) gene in porcine endometrium and embryos relative to estrogen receptor α gene expression. Molecular Reproduction and Development, vol. 64, no. 1, p. 4-12. https://doi.org/10.1002/mrd.10217

Yim, D., Jie, H. B., Lanier, L. L., Kim, Y. B. 2000. Molecular cloning, gene structure, and expression pattern of pig immunoreceptor DAP12. Immunogenetics, vol. 51, no. 6, p. 436-442. https://doi.org/10.1007/s002510050642

Zhang, X., Wang, C., Schook, L. B., Hawken, R. J., Rutherford, M. S. 2000. An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microbial pathogenesis, vol. 28, no. 5, p. 267-278. https://doi.org/10.1006/mpat.1999.0349

Published

2019-05-28

How to Cite

Vasilevskaya, E. R., & Akhremko, A. G. (2019). Proteomic study of pig’s spleen. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 314–317. https://doi.org/10.5219/1093