Loop-mediated isothermal amplification (LAMP) for rapid detection of L. monocytogenes in meat

Authors

  • Yuliya Yushina V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.: 8-916-433-51-99
  • Anzhelika Makhova V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.:8-916-570-91-79 https://orcid.org/0000-0002-5048-9321
  • Elena Zayko V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.:8-960-548-71-95 https://orcid.org/0000-0002-5048-9321
  • Dagmara Bataeva V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Department of hygiene of production and microbiology, Talalikhina st. 26, 109316, Moscow, Russia, Tel.:8-985-663-84-06

DOI:

https://doi.org/10.5219/1165

Keywords:

meat, L. monocytogenes detection, LAMP-method

Abstract

There is a continued need to develop improved rapid methods for detection of foodborne pathogens. Rapid and sensitive methods for enumeration of Listeria monocytogenes are important for microbiological food safety testing purpose. The aim of this project was to evaluate a commercial loop-mediated isothermal amplification (LAMP) based system with bioluminescence, named as 3M™ Molecular Detection Assay (MDA), was validated for the detection of L. monocytogenes in food products with a standard GOST 32031-2012 method as reference. The results of this study revealed that a commercial LAMP-based method performed equally effective compared with method, showing from 94% to 100% specificity and sensitivity, respectively. The LAMP-based method was shown to be rapid and reliable detection technique for L. monocytogenes present at low numbers (10 CFU.g-1) on raw meat and meat products and can be applicable in meat industry. Thus, compared with the microbiological method based GOST 32031-2012, the LAMP assay is a relatively rapid and highly sensitive method for detecting L. monocytogenes and will facilitate the surveillance for contamination of L. monocytogenes in food. The 3M MDS result and culture-based detection (GOST 32031-2012) did not differ significantly (p >0.05) regarding the number of positive samples.

Downloads

Download data is not yet available.

References

Abdulmawjood, A., Wickhorst , J., Hashim, O., Sammra, O., Hassan, A., Alssahen, M., Lämmler, C., Prenger-Berninghoff, E., Kleina, G. 2016. Application of a loop-mediated isothermal amplification (LAMP) assay for molecular identification of Trueperella pyogenes isolated from various origins. Molecular and Cellular Probes, vol. 30, no. 4, p. 205-210. https://doi.org/10.1016/j.mcp.2016.05.003

Allerberger, F., Wagner, M. 2010. Llisteriosis: A Resurgent Foodborne Infection. Clinical Microbiology and Infection, vol. 16, no. 1, p. 16-23. https://doi.org/10.1111/j.1469-0691.2009.03109.x

Bird, P., Fisher, K., Boyle, M., Huffman, T., Benzinger, M. J. Jr., Bedinghaus, P., Flannery, J., Crowley, E., Agin, J., Goins, D., Benesh, D., David, J. 2013. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study. AOAC International, vol. 96, no. 6, p. 1325-1335. https://doi.org/10.5740/jaoacint.13-227

Bogdanovičová, K., Skočková, A., Šťástková, Z., Koláčková, I., Karpíšková, R. 2015. The bacteriological quality of goat and ovine milk. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, p. 72-76. https://doi.org/10.5219/438

Carpentier, B., Cerf, O. 2011. Review — Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, vol. 145, no. 1, p. 1-8 https://doi.org/10.1016/j.ijfoodmicro.2011.01.005

EFSA. 2011. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the European Union, 2010-2011. Part A: Listeria monocytogenes prevalence estimates. EFSA Journal, vol. 11, no. 6, 75 p. https://doi.org/10.2903/j.efsa.2013.3241

EFSA and ECDC. 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, vol. 15, no. 12, 228 p. https://doi.org/10.2903/j.efsa.2017.5077

Ennaji, H., Timinouni, M., Ennaji, M., Hassar, M., Cohen, N. 2008. Characterization and antibiotic susceptibility of Listeria monocytogenes isolated from poultry and red meat in Morocco. Infection and drug resistance, vol. 2008, no. 1, p. 45-50. https://doi.org/10.2147/IDR.S3632

Feldsine, P., Abeyta, C., Andrews, W. H. 2002. AOAC International methods committee guidelines of validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int., vol. 85, p. 1187-1200.

Gandhi, M., Chikindas, M. L. 2007. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, vol. 113, no. 1, p. 1-15 https://doi.org/10.1016/j.ijfoodmicro.2006.07.008

Garrido-Maestu, A., Azinheiro, S., Carvalho, J., Abalde-Cela, S., Carbó-Argibay, E., Diéguez, L., Prado, M. 2017. Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, vol. 8, p. 2159. https://doi.org/10.3389/fmicb.2017.02159

Gianfranceschi, M. V., Rodriguez-Lazaro, D., Hernandez, M., González-García, P., Comin, D., Gattuso, A., Delibato, E., Sonnessa, M., Pasquali, F., Prencipe, V., Sreter-Lancz, T., Saiz-Abajo, M. J., Pérez-De-Juan, J., Butrón, J., Kozačinski, L., Tomic, D. H., Zdolec, N., Johannessen, G. S., Jakočiūnė, D., Olsen, J. E., De Santis, P., Lovari, S., Bertasi, B., Pavoni, E., Paiusco, A., De Cesare, A., Manfreda, G., De Medici, D. 2014. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese. Int. J. Food Microbiol., vol. 184, 128-133. https://doi.org/10.1016/j.ijfoodmicro.2013.12.021

GOST 32031-2012. Food products. Methods for detection of Listeria monocytogenes.

Indrawattana, N., Nibaddhasobon, T., Sookrung, N., Chongsa-Nguan, M., Tungtrongchitr, A., Makino, S., Tungyong, W., Chaicumpa, W. 2011. Prevalence of Listeria monocytogenes in raw meats marketed in Bangkok and characterization of the isolates by phenotypic and molecular methods. Journal of Health Population and Nutrition, vol. 29, no. 1, p. 26-38. https://doi.org/10.3329/jhpn.v29i1.7565

Koch, J., Dworak, R., Prager, R., Becker, B., Brockmann, S., Wicke, A., Wichmann-Schauer, H., Hof, H., Werber, D., Stark, K. 2010. Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne pathogens and diseases, vol 7, no. 12, p. 1581-1584. https://doi.org/10.1089/fpd.2010.0631

Koreňová, J., Oravcová, K. 2011. Persistence of l. monocytogenes versus adherence on solid surface. Potravinarstvo, vol. 5, no. 2, p. 41-44. https://doi.org/10.5219/135

Law, J. W., Ab Mutalib, N. S., Chan, K. G., Lee, L. H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in Microbiology, vol. 5, p. 770. https://doi.org/10.3389/fmicb.2014.00770

Lim, H. S., Zheng, Q., Miks-Krajnik, M., Turner, M., Yuk, H. G. 2015. Evaluation of commercial kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore. J. Food Prot., vol. 78, no. 6, p. 1203-1207. https://doi.org/10.4315/0362-028X.JFP-14-535

Mikš-Krajnik, M., Lim, H., Zheng, Q., Turner, M., Yuk, H. 2015. Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces. Food Control, no. 60, p. 237-240 https://doi.org/10.1016/j.foodcont.2015.07.035

Miya, S., Takahashi, H., Nakagaw, M., Kuda, T., Igimi, S., Kimura, B. 2015. Genetic Characteristics of Japanese Clinical Listeria monocytogenes Isolates. PLoS One, vol. 10. https://doi.org/10.1371/journal.pone.0122902

Rip, D., Gouws, P. A. 2009. Development of an internal amplification control using multiplex PCR for the detection of Listeria monocytogenes in food products. Food Anal. Methods, vol. 2, p. 190-196. https://doi.org/10.1007/s12161-009-9081-4

Seyrig, G., Stedtfeld, R. D., Tourlousse, D. M., Ahmad, F., Towery, K., Cupples, A. M., Tiedje, J. M., Hashsham, S. A. 2015. Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. J. Microbiol. Methods, vol. 119, p. 223-227. https://doi.org/10.1016/j.mimet.2015.11.004

Self, J. L., Conrad, A., Stroika, S., Jackson, A., Whitlock, L., Jackson, K. A., Beal, J., Wellman, A., Fatica, M. K., Bidol, S., Huth, P. P., Hamel, M., Franklin, K., Tschetter, L., Kopko, C., Kirsch, P., Wise, M. E., Basler, C. 2019. Multistate Outbreak of Listeriosis Associated with Packaged Leafy Green Salads, United States and Canada, 2015–2016. Emerging Infectious Diseases, vol. 25. no. 8, p. 1461-1468. https://https://doi.org/10.3201/eid2508.180761

Shan, X., Zhang, Y., Zhang, Z., Chen, M., Su, Y., Yuan, Y., Jahangir Alam, M., Yan, H., Shi, L. 2012. Rapid Detection of Food-borne Listeria monocytogenes by Real-time Quantitative Loop-mediated Isothermal Amplification. Food science and biotechnology, vol. 21, no. 1, p. 101-106. https://doi.org/10.1007/s10068-012-0012-6

Swaminathan, B., Gerner-Smidt, P. 2007. The Epidemiology of Human Listeriosis. Microbes and Infection, vol. 9, no. 10, p. 1236-1243. https://doi.org/10.1016/j.micinf.2007.05.011

Centers for Disease Control and Prevention. 2014.

Wachiralurpan, S., Sriyapai T., Areekit S., Kaewphinit T., Sriyapai, P., Santiwatanakul, S., Chansiri, K. 2017. Development of a rapid screening test for Listeria monocytogenes in raw chicken meat using loop-mediated isothermal amplification (LAMP) and Lateral Flow Dipstick (LFD). Food Anal. Methods, vol. 10, no. 11, p. 3763-3772. https://doi.org/10.1007/s12161-017-0949-4

Wachiralurpan, S., Sriyapai, T., Areekit, S., Sriyapai, P., Augkarawaritsawong, S., Santiwatanakul, S., Chansiri, K. 2018. Rapid Colorimetric Assay for Detection of Listeria monocytogenes in Food Samples Using LAMP Formation of DNA Concatemers and Gold Nanoparticle-DNA Probe Complex. Front. Chem., vol. 6. https://doi.org/10.3389/fchem.2018.00090

Wang, Y., Wang, Y., Luo, L., Liu, D., Luo, X., Xu, Y., Hu, S., Niu, L., Xu, J., Ye, C. 2015. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Frontiers in microbiology, vol. 6. https://doi.org/10.3389/fmicb.2015.01400

Warriner, K., Namvar, A. 2009. What is the hysteria with Listeria? Trends in Food Science & Technology, vol. 6, no. 20, p. 245-254. https://doi.org/10.1016/j.tifs.2009.03.008

Published

2019-10-28

How to Cite

Yushina, Y. ., Makhova, A., Zayko, E., & Bataeva, D. (2019). Loop-mediated isothermal amplification (LAMP) for rapid detection of L. monocytogenes in meat. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 800–805. https://doi.org/10.5219/1165