137Cs activity concentration in mushrooms from the Bobrůvka river valley

Authors

  • Petr Dvořák University of Veterinary and Pharmaceutical Sciences in Brno, The Centre for Ionizing Radiation Application, Department of Biology and Wildlife Diseases at the Faculty of Veterinary Hygiene and Ecology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic, Tel. +420541562608
  • Jana Doležalová University of Veterinary and Pharmaceutical Sciences in Brno, Department of Animal Origin Food and Gastronomic Sciences at the Faculty of Veterinary Hygiene and Ecology, Palackého tř. 1946/1, 612 42 Brno, Czech Republic, Tel. +420541562623
  • Katarí­na Beňová University of Veterinary Medicine and Pharmacy in Košice, Institute of Biology, Zoology and Radiobiology, Komenského 73, 041 81 Košice, Slovak Republic, Tel.+421915984681
  • Martin Tomko University of Veterinary Medicine and Pharmacy in Košice, Institute of Biology, Zoology and Radiobiology, Komenského 73, 041 81 Košice, Slovak Republic, Tel. +421918413553 https://orcid.org/0000-0002-5351-7877

DOI:

https://doi.org/10.5219/1245

Keywords:

radiocaesium, mushrooms, river valley, Boletus, Imleria

Abstract

In the 2017-2018 mushrooming seasons at the (Bohemian-Moravian Highlands near Dolní­ Roží­nka) a total of 505 mushrooms belonging to 9 species were collected, and analyzed by gamma spectrometry for 137Cs activity. The maximum 137Cs activity of 575 Bq.kg-1 was detected in Boletus edulis species, what in native state, is just below the allowed limit. In contrast, in mushroom Imleria badia, which is reported to be associated with the highest cumulative capability from all fungi species, detected activity level was only 316 Bq. kg-1. However, differences in mean contamination values were not significant due to high variability. It was shown, that activity concentration is not dependent on the weight (size) of Imleria badia. Our results also confirmed generally well known lower 137Cs activity in the Russula species representatives belonging to the group of gills or lamella bearing mushrooms.

Downloads

Download data is not yet available.

References

Beňová, K., Dvořák, P., Tomko, M. Falis, M. 2016. Artificial environmental radionuclides in Europe and methods of lowering their foodstuff contamination – a review. Acta Veterinaria Brno, vol. 85, no. 1, p. 105-112. https://doi.org/10.2754/avb201685010105

Bulko, N. I., Shabaleva, M. A., Kozlov, A. K., Tolkacheva, N. V., Mashkov I. A. 2014. The 137Cs accumulation by forest-derived products in the Gomel region. Journal of Environmental Radioactivity, vol. 127, p. 150-154. https://doi.org/10.1016/j.jenvrad.2013.02.003

Čipáková, A. 2004. Cs-137 content in mushrooms from localities in eastern Slovakia. Nucleonika, vol. 49, suppl. 1, p. 25-29.

Chiaravalle, A. E., Mangiacotti, M, Manchesani, G, Bortone, N., Tomaiuolo, M., Trotta, G. 2018. A ten- year survey of radiocontamination of edible Balkan mushrooms: 137Cs activity levels and assessed dose to the population. Food control, vol. 94, p. 263-267. https://doi.org/10.1016/j.foodcont.2018.05.045

Duff, M. C., Ramsey, M. L. 2008. Accumulation of radiocesium by mushrooms in the environment: a literature review. Journal of Environmental Radioactivity, vol. 99, no. 6, 912-932. https://doi.org/10.1016/j.jenvrad.2007.11.017

Dvořák, P., Kunová, V., Beňová, K., Ohera, M. 2006. Radiocesium in mushrooms from selected locations in the Czech Republic and the Slovak Republic. Radiation and Environmental Biophysics, vol. 45, no. 2, p. 145-151. https://doi.org/10.1007/s00411-006-0044-5

Dvořák, P., Snášel, P., Beňová, K. 2010. Transfer of radiocesium into wild boar meat. Acta Veterinaria Brno, vol. 79, suppl. 9, p. S85-S91. https://doi.org/10.2754/avb201079S9S085

Guillen, J., Beaza, A. 2014. Radioactivity in mushrooms. A health hazard? Food Chemistry, vol. 154, p. 14-25. https://doi.org/10.1016/j.foodchem.2013.12.083

Henrich, G., 1992. Uptake and transfer factors of 137Cs by mushrooms. Radiation and Environmental Biophysics, vol. 31, p. 39-49.

Heinrich, G. 1993. Distribution of radiocesium in the different parts of mushrooms, Journal of Environmental Radioactivity, vol. 18, no. 3, p. 229-245. https://doi.org/10.1016/0265-931X(93)90029-7

Kalač, P. 2001. A review of edible mushroom radioactivity. Food Chemistry, vol. 75 no. 1, p. 29-35. https://doi.org/10.1016/S0308-8146(01)00171-6

Kunová, V., Dvořák, P., Beňová, K. 2006. The activity concentration of radiocesium in mushrooms from locality Staré Ransko. In Proceedings of the 3rd Radiobiological Conference with international participation dedicated to the 20th anniversary of the Chernobyl nuclear accident. Slovakia, Košice, UVL, p. 336-339. MSM6215712402.

Lehto, J., Vaaramaa, K., Leskinen, A. 2013. 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. Journal of Environmental Radioactivity, vol. 116, p. 124-132. https://doi.org/10.1016/j.jenvrad.2012.08.012

Mukhopadhyay, B., Nag M., Laskar, S., Lahiri, S. 2007. Accumulation of radiocaesium Pleurotus citrinopileatus species of edible mushroom. Journal of Radionalytical and Nuclear Chemistry, vol. 273, no. 2, p. 415-418. https://doi.org/10.1007/s10967-007-6875-y

Nilsson, T. 2009. Uptake of 137Cs by fungi and plants due to potassium fertilization in Heby municipality in response to the Chernobyl nuclear accident. Uppsala: SLU (Swedish University of Agricultural Sciences) 37 p. Available at: https://stud.epsilon.slu.se/786/1/nilsson_t_100121.pdf

Pourcelot, L., Renaud, P., Louvat, D., Gurriaran, R., Richton, P. 2003. Influence of hot spots on cesium-137 contamination of an alpine food chain and doses associated with it. Environment, Risques et Sante, vol. 2, no. 2, p. 112-120.

Smith, J., Beresford, N. A. 2005. Chernobyl – Catastrophe and consequences. Chichester: Springer, Praxis publishing. 310 p. ISBN-13: 978-3540238669

Söderlund, M., Lusa, M., Lehto, J., Hakanen, M., Vaarama, K., Lahdenperä, A. 2011. Sorption of iodine, chlorine, technetium and cesium in soil. Eurajoki: Posiva OY. 130 p. Available at: http://www.posiva.fi/files/1524/WR_2011-04_web.pdf

Steiner, M., Linkov, I., Yoshida, S. 2000. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. Journal of Environmental Radioactivity, vol. 58, no. 2-3, p. 217-241. https://doi.org/10.1016/S0265-931X(01)00067-4

SÚJB (State Office for Nuclear Safety) 2016. Available at: https://www.sujb.cz/fileadmin/sujb/docs/zpravy/vyrocni_zpravy/ceske/VZ_SUJB_2016_FIN_cast_II.pdf

Škrkal, J., Rulík, P., Fantínová, K., Burianová, J., Helebrant, J. 2013. Long-term 137Cs activity monitoring of mushrooms in forest ecosystems of the Czech Republic. Radiation Protection Dosimetry, vol. 157, no. 4., p. 579-584. https://doi.org/10.1093/rpd/nct172

Vinichuk, M. M., Johanson, K. J. 2003. Accumulation of 137Cs by fungal mycelium in forest ecosystems of Ukraine. Journal of Environmental Radioactivity, vol. 64, no. 1, p. 27-43. https://doi.org/10.1016/S0265-931X(02)00056-5

Wasek, M., Wroczyński, P., Sołobodowska, S., Szewczak, K., Jarosz, Z. 2014. Measurement of the radioactivity of 137Cs in materials of plant origin with potential radioactive contamination. Acta Poloniae Pharmaceutica-Drug Research, vol. 71, p. 1114-1118.

Published

2020-05-28

How to Cite

Dvořák, P., Doležalová, J., Beňová, K., & Tomko, M. (2020). 137Cs activity concentration in mushrooms from the Bobrůvka river valley . Potravinarstvo Slovak Journal of Food Sciences, 14, 254–257. https://doi.org/10.5219/1245

Most read articles by the same author(s)