Antioxidant activities of snakehead (Channa striata) fish skin: peptides hydrolysis using protease tp2 isolate from swamp plant silage

Authors

  • Ace Baehaki Universitas Sriwjaya, Faculty of Agricuture, Department of Fisheries Product Technology, Jl. Palembang-Prabumulih Km 32, postal code 30862, Indralaya, South Sumatera, Indonesia, Tel.: +6281272512720 https://orcid.org/0000-0001-6402-1060
  • Indah Widiastuti Universitas Sriwjaya, Faculty of Agricuture, Department of Fisheries Product Technology, Jl. Palembang-Prabumulih Km 32, postal code 30862, Indralaya, South Sumatera, Indonesia, Tel.: +6281276740036 https://orcid.org/0000-0003-1492-2463
  • Citra Nainggolan Universitas Sriwjaya, Faculty of Agricuture, Department of Fisheries Product Technology, Jl. Palembang-Prabumulih Km 32, postal code 30862, Indralaya, South Sumatera, Indonesia, Tel.: +6281368877664
  • Nuni Gofar Universitas Sriwjaya, Faculty of Agricuture, Department of Soil Sciences, Jl. Palembang-Prabumulih Km 32, postal code 30862, Indralaya, South Sumatera, Indonesia, Tel.: +6282183462246

DOI:

https://doi.org/10.5219/1264

Keywords:

hydrolysis time, protein hydrolysates, skin, snakehead, Channa striata, antioxidant

Abstract

The purpose of this research was to study the antioxidants activities of peptides from skin fish of snakehead (Channa striata), using hydrolysis of protease TP2 isolate from swamp plant silage. This research 5 treatments hydrolysis time
(0, 30, 60, 90, 120 min, respectively), with two replicates, which included several stages of preparation and pre-treatment of the snakehead fish skin production of protease enzymes which were isolated from swamp water, preparation of protein hydrolysates, measurement of hydrolysis degrees, analysis of peptides content and analysis of the antioxidant activity. Results showed that the treatment had given a significant effect on the 5% level of the degree of hydrolysis production (13.98% – 27.08%), with peptides content of 2.73% – 3.78% and antioxidant activity (10.75% – 20.7%). The results of the degree of hydrolysis indicate that the longer the hydrolysis time, the percent degree of hydrolysis will increase. Peptide content and antioxidant activity were increased with increasing hydrolysis time.

Downloads

Download data is not yet available.

References

Baehaki, A., Lestari, S. D., Romadhoni, R. 2015. Protein hydrolysis from catfish prepared by papain enzyme and antioxidant activity of hydrolyzate. Jurnal Pengolahan Hasil Perikanan Indonesia, vol. 18, no. 3, p. 230-235. https://doi.org/10.17844/jphpi.v18i3.11208

Baehaki, A., Lestari, S. L., Tirtayasa, A., Hidayat, A., Gofar, N. 2018. Production and Characterization of Protease from TP2 isolate from Plant Swamp Silage. Research Journal of Biotechnology, vol. 13, no. 12, p. 18-21.

Baehaki, A., Rinto, Budiman, A. 2011. Isolation and characterization of protease from Indralaya soil swamp bacteria. South Sumatera. Jurnal Teknologi & Industri Pangan, vol. 22, no. 1, p. 40-45. Available at: http://journal.ipb.ac.id/index.php/jtip/article/view/3394/0.

Baehaki, A., Suhartono, M. T., Sukarno, Syah, D., Setyahadi, S. 2016. Antioxidant activity of collagen hydrolysates from fish skin with a microbial collagenase. Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol 7, no. 2, p. 1677-1682. Available at: https://www.rjpbcs.com/pdf/2016_7(2)/[232].pdf.

Bhaskar, N., Benila, T., Radha, C., Lalitha, R. G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, vol. 99, p. 335–343. https://doi.org/10.1016/j.biortech.2006.12.015.

Blanco, M., Sotelo, C. G., Chapela, M., Perez-Martin, R. I. 2007. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends in Food Sciences & Technology, vol. 18, p. 29-36. https://doi.org/10.1016/j.tifs.2006.07.015

Carlsen, C. U., Rasmussen, K. T., Kjeldsen, K. K., Westergaard, P., Skibsted, L. H. 2003. Pro- and antioxidative activity of protein fractions from pork (Longissimus dorsi). European Food Reserach & Technology, vol. 217, p.195-200. https://doi.org/10.1007/s00217-003-0733-0

Chen, J., Wang, Y., Zhong, Q., Wu, Y., Xia, W. 2012. Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides, vol 33, no. 1, 42-58. https://doi.org/10.1016/j.peptides.2011.11.006

Elias, R. J., Kellerby, S. S., Decker, E. A. 2008. Antioxidant activity of proteins and peptides. Food Sciences & Nutrtion, vol. 48, no. 5, p. 430-441. https://doi.org/10.1080/10408390701425615

Gelse, K., Poschlb, E., Aigner, T. 2003. Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews, vol. 55, no. 15, p. 1531-1546. https://doi.org/10.1016/j.addr.2003.08.002

Gomez-Guillen, M. C., Gimenes, B., Lopez-Caballero, M. E., Montero, M. P. 2011. Functional and bioactive properties of collagen and gelatin from alternative source: a review. Food Hydrocolloid, vol. 25, no. 8, p. 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

Gomez-Guillen, M. C., Lopez-Caballer, M. E., Aleman, A., Gimenez, B., Montero, P. 2010. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. Sea By-Products as Real Material New ways of Application. In Estelle le Bihan. Sea By-Products as Real Material: New Ways of Application. Kerala, India : Transworld Research Network, p. 89-114. Available at: https://core.ac.uk/download/pdf/36050741.pdf.

Gonzalez-Rabade, M., Badillo-corona, J. A., Aranda-barradas, J. S., Oliver-salvador, M. C. 2011. Production of plant proteases in vivo and in vitro-a review. Biotecnology Advances, vol. 29, no. 6, p. 983-996. https://doi.org/10.1016/j.biotechadv.2011.08.017

Guerard, F., Dufosse, L., Broise, D .L., Binet, A. 2001. Enzymatic hydrolysis of proteins fromyellow fin tuna (Thunnus albacares) wastes using alcalase. Journal of Molecular Catalysis B: Enzyme, vol. 11, p. 1051-1059. https://doi.org/10.1016%2FS1381-1177(00)00031-X

Hasnaliza, H., Maskat, M. Y., Wan, A. W. M., Mamot, S. 2010. The effect of enzyme concentration, temperature, and incubation time on nitrogen content and degree of hydrolysis of protein precipate from cockle (Anadara granosa) meat fresh water International Food Research Journal, vol. 17, p. 147-152. Available at: http://www.ifrj.upm.edu.my/17%20(01)%202010/(16)%20IFRJ-2010-147-152%20Maskat%20malaysia.pdf.

Hoyle, N. T., Merritt, J. H. 1994. Quality of fish protein hydrolysates from herring (clupea harengus). Journal of Food Science, vol. 69, p. 615-619. https://doi.org/10.1111/j.1365-2621.1994.tb06901.x

Jun, S. Y., Park, P. J., Jung, W. K., Kim, S. K. 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of Yellowfin sole (Limanda aspera) frame protein. European Food Reserach & Techology, vol. 219, p. 20-26. https://doi.org/10.1007/s00217-004-0882-9

Khirzin, M. H., Sukarno, S., Yuliana, N. D., Fawzya, Y. N., Chasanah, E. 2015. The activity of angiotensin converting enzyme (ACE) inhibitor and collagen peptide antioxidant from gamma sea cucumber (Stichopus variegates). Jurnal Pasca Panen & Bioteknologi Kelautan dan Perikanan, vol 10, no. 1, p. 27-35. https://doi.org/10.15578/jpbkp.v10i1.242

Kim, S. K., Kim, Y., Byun, H. G., Nam, K. S., Joo, D. S., Shahidi, F. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Allaska Pollack skin. Journal of Agricultural & Food Chemistry, vol. 49, p. 1984-1989. https://doi.org/10.1021/jf000494j

Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemisry, vol. 102, p. 1317-1327. https://doi.org/10.1016/j.foodchem.2006.07.016

Korhonen, H. 2009. Milk-derived bioactive peptides: from science to applications. Journal of Functional Foods, vol. 1, no. 2, p. 177-187. https://doi.org/10.1016/j.jff.2009.01.007

Korhonen, H., Pihlanto, A. 2006. Bioactive peptides: production and functionality. International Dairy Journal, vol. 16, no. 9, p. 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012

Liu, D., Nikoo, M., Boran, G., Zhou, P., Regenstein, J. M. 2015. Collagen and gelatin. Annual Review of Food Science and Technology, vol. 6, p. 527-557. https://doi.org/10.1146/annurev-food-031414-111800

Moller, N. P., Scholz-Ahrens, K. E., Roos, N., Schrezenmeir, J. 2008. Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition, vol. 47, no. 4, p. 171-182. https://doi.org/10.1007/s00394-008-0710-2

Molyneux, P. 2004. The use of the stable free radicals diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Sciences & Technology, vol. 26, p. 211-219. Available at: http://rdo.psu.ac.th/sjstweb/journal/26-2/07-DPPH.pdf.

Muchtadi, M., Palupi, N. S., Astawan, M. 1992. Chemical, biochemical and biological methods in evaluating the nutritional value of processed food. Bogor : Inter-University Center for Food and Nutrition, IPB University.

Nielsen, H., Engelbrecht, J., Brunak, S., von-Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, vol. 10, no. 1, p. 1-6. https://doi.org/10.1093/protein/10.1.1

Park, P. J., Jung, W. K., Nam, K. S., Shahidi, F., Kim, S. K. 2001. Purification and characterization of antioxidative peptides from protein hydrolysate of lechitin-free egg yolk. Journal of the American Oil Chemists’ Society, vol. 78, p. 651-656. https://doi.org/10.1007/s11746-001-0321-0

Phelan, M., Aherne, A., FitzGerald, R. J., O Brien, N. M. 2009. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal, vol. 19, p. 643-654. https://doi.org/10.1016/j.idairyj.2009.06.001

Putalan, R. 2018. Fractionation of peptide stripe trevally (Selaroides leptolesis) and as antioxidants and inhibitors ACE. Thesis. IPB University. Bogor.

Rao, M. M., Tanksale, A. M., Gatge, M. S., Desphande, V. V. 1998. Molecular and biotechnological aspect of microbial proteases. Microbiology Molecular Biology Reviews, vol. 62, no. 3, p. 597-635. https://doi.org/10.1128/MMBR.62.3.597-635.1998

Samaranayaka, A. G. P., Li-Chan, E. C. Y. 2011. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods, vol. 3, p. 229-254. https://doi.org/10.1016/j.jff.2011.05.006

Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. 1992. Antioxidant properties of Xanhone on the auto oxidation of soybean in cyclodextrin emulsion. Journal of Agricultural & Food Chemistry, vol. 40, no. 6, p. 945-948. https://doi.org/10.1021/jf00018a005

Wikandari, P. R., Yuanita, L. 2016. The effect of degradation of proteolytic enzyme on angiotensin converting enzyme inhibitor activity of bekasam with Lactobacillus plantarum B1765. Agritech, vol. 36, no. 2, p. 170-175. https://doi.org/10.22146/agritech.12861

Published

2020-06-28

How to Cite

Baehaki, A., Widiastuti, I., Nainggolan, C., & Gofar, N. (2020). Antioxidant activities of snakehead (Channa striata) fish skin: peptides hydrolysis using protease tp2 isolate from swamp plant silage. Potravinarstvo Slovak Journal of Food Sciences, 14, 379–384. https://doi.org/10.5219/1264