Spontaneous fermentation in wine production as a controllable technology

Authors

  • Radim Holešinský Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice, Czech Republic, Tel. +420 721 412 888 https://orcid.org/0000-0001-8966-3254
  • Božena Průšová Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice, Czech Republic, Tel.: +420 519 367 259 https://orcid.org/0000-0003-2582-1713
  • Mojmír Baroň Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice, Czech Republic, Tel.: +420 519 367 252 https://orcid.org/0000-0003-1649-0537
  • Jaromír Fiala Research Institute of Brewing and Malting, Lipova 15, Prague 12044, Czech Republic, Tel.: +420 224 900 126 https://orcid.org/0000-0002-7196-4523
  • Petra Kubizniakova Research Institute of Brewing and Malting, Lipova 15, Prague 12044, Czech Republic, Tel.: +420 224 900 152 https://orcid.org/0000-0003-2070-1616
  • Vít Paulíček EPS biotechnology, s.r.o., V Pastouškách 205, 686 04 Kunovice, Czech Republic, Tel.: +420 777 743 542
  • Jiří Sochor Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice, Czech Republic, Tel: +420 519 367 254 https://orcid.org/0000-0001-7823-1544

DOI:

https://doi.org/10.5219/1280

Keywords:

spontaneous fermentation, yeast cultivation, yeast isolation

Abstract

This study focuses on the isolation of a consortium of microorganisms from spontaneously fermenting must that naturally contain lactic acid bacteria, non-saccharomyces yeasts, and saccharomyces yeasts. To collect the greatest diversity of microorganisms, the consortium was taken from the point of micro-sparkling. Based on the growth curves, isolation was performed using individual special nutrient media, and the isolates were subsequently multiplied in the nutrient medium. Individual isolates were then used for fermentation tests to monitor the percentage of fermented sugar and hydrogen sulphide production. The highest fermentation abilities were achieved in the isolates containing Saccharomyces cerevisiae and Zygosaccharomyces bailii. The smallest amount of ethanol was formed from the isolates containing Hanseniaspora uvarum, while Candida sake isolate produced the lowest amount of hydrogen sulphide and Zygosaccharomyces bailii produced the highest. The other isolates produced an average amount. Based on these results, a consortium containing the given isolates in a certain ratio was compiled.

Downloads

Download data is not yet available.

References

Albergaria, H. Arneborg, N. 2016. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Applied microbiology and biotechnology, vol. 100, no. 5, p. 2035-2046. https://doi.org/10.1007/s00253-015-7255-0

Alexandre, H., Rousseaux, I. Charpentier, C. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS microbiology letters, vol. 124, no. 1, p. 17-22. https://doi.org/10.1111/j.1574-6968.1994.tb07255.x

Alonso-del-Real, J., Lairón-Peris, M., Barrio, E. Querol, A. 2017. Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition. Frontiers in microbiology, vol. 8, p. 150. https://doi.org/10.3389/fmicb.2017.00150

Arroyo-López, F. N., Querol, A. Barrio, E. 2009. Application of a substrate inhibition model to estimate the effect of fructose concentration on the growth of diverse Saccharomyces cerevisiae strains. Journal of industrial microbiology & biotechnology, vol. 36, no. 5, p. 663-669. https://doi.org/10.1007/s10295-009-0535-x

Bader, O., Weig, M., Taverne-Ghadwal, L., Lugert, R., Gross, U. Kuhns, M. 2011. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Microbiology and Infection, vol. 17, no. 9, p. 1359-1365. https://doi.org/10.1111/j.1469-0691.2010.03398.x

Barata, A., Malfeito-Ferreira, M. Loureiro, V. 2012. The microbial ecology of wine grape berries. International journal of food microbiology, vol. 153, no. 3, p. 243-259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025

Bauer, R., Dicks, L. M. 2004. Control of malolactic fermentation in wine. A review. South African Journal of Enology and Viticulture, vol. 25, no. 2, p. 74-88. https://doi.org/10.21548/25-2-2141

Berbegal, C., Peña, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano, G. Capozzi, V. 2016. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food microbiology, vol. 57, no. p. 187-194. https://doi.org/10.1016/j.fm.2016.03.002

Berbegal, C., Spano, G., Tristezza, M., Grieco, F. Capozzi, V. 2017. Microbial resources and innovation in the wine production sector. South African Journal of Enology and Viticulture, vol. 38, no. 2, p. 156-166. https://doi.org/10.21548/38-2-1333

Bisson, L. F. 2012. Geographic origin and diversity of wine strains of Saccharomyces. American journal of enology and viticulture, vol. 63, no. 2, p. 165-176. https://doi.org/10.5344/ajev.2012.11083

Bokulich, N. A., Thorngate, J. H., Richardson, P. M. Mills, D. A. 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences, vol. 111, no. 1, p. E139-E148. https://doi.org/10.1073/pnas.1317377110

Brice, C., Cubillos, F. A., Dequin, S., Camarasa, C. Martinez, C. 2018. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PloS one, vol. 13, no. 2, p. e0192383. https://doi.org/10.1371/journal.pone.0192383

Brizuela, N. S., Bravo-Ferrada, B. M., La Hens, D. V., Hollmann, A., Delfederico, L., Caballero, A., Tymczyszyn, E. E. Semorile, L. 2017. Comparative vinification assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. LWT, vol. 77, no. p. 348-355. https://doi.org/10.1016/j.lwt.2016.11.023

Campbell-Sills, H., Capozzi, V., Romano, A., Cappellin, L., Spano, G., Breniaux, M., Lucas, P. Biasioli, F. 2016. Advances in wine analysis by PTR-ToF-MS: Optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters. International Journal of Mass Spectrometry, vol. 397, no. p. 42-51. https://doi.org/10.1016/j.ijms.2016.02.001

Ciani, M., Capece, A., Comitini, F., Canonico, L., Siesto, G. Romano, P. 2016. Yeast interactions in inoculated wine fermentation. Frontiers in microbiology, vol. 7, no. p. 555. https://doi.org/10.3389/fmicb.2016.00555

Clavijo, A., Calderón, I. L. Paneque, P. 2010. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serrania de Ronda (Spain) vine-growing region. International journal of food microbiology, vol. 143, no. 3, p. 241-245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010

Cordero-Bueso, G., Arroyo, T., Serrano, A. Valero, E. 2011. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS microbiology ecology, vol. 77, no. 2, p. 429-437. https://doi.org/10.1111/j.1574-6941.2011.01124.x

Crosato, G., Carlot, M., De Iseppi, A., Garavaglia, J., Pinto, L. M. N., Ziegler, D. R., de Souza Ramos, R. C., Rossi, R. C., Nadai, C. Giacomini, A. 2018. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area. World Journal of Microbiology and Biotechnology, vol. 34, no. 8, p. 105. https://doi.org/10.1007/s11274-018-2490-z

Dhiman, N., Hall, L., Wohlfiel, S. L., Buckwalter, S. P. Wengenack, N. L. 2011. Performance and cost analysis of matrix-assisted laser desorption ionization–time of flight mass spectrometry for routine identification of yeast. Journal of clinical microbiology, vol. 49, no. 4, p. 1614-1616. https://doi.org/10.1128/JCM.02381-10

Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. Zhang, K. 2009. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied microbiology and biotechnology, vol. 85, no. 2, p. 253. https://doi.org/10.1007/s00253-009-2223-1

du Toit, M., Engelbrecht, L., Lerm, E. Krieger-Weber, S. 2011. Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food and Bioprocess Technology, vol. 4, no. 6, p. 876-906. https://doi.org/10.1007/s11947-010-0448-8

Egli, C., Edinger, W., Mitrakul, C. Henick‐Kling, T. 1998. Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. Journal of Applied Microbiology, vol. 85, no. 5, p. 779-789. https://doi.org/10.1046/j.1365-2672.1998.00521.x

Fleet, G. H. 2003. Yeast interactions and wine flavour. International journal of food microbiology, vol. 86, no. 1-2, p. 11-22. https://doi.org/10.1016/S0168-1605(03)00245-9

Ganucci, D., Guerrini, S., Mangani, S., Vincenzini, M. Granchi, L. 2018. Quantifying the Effects of ethanol and temperature on the fitness advantage of predominant Saccharomyces cerevisiae strains occurring in spontaneous wine fermentations. Frontiers in microbiology, vol. 9, no. p. 1563. https://doi.org/10.3389/fmicb.2018.01563

García-Ríos, E., Gutiérrez, A., Salvadó, Z., Arroyo-López, F. N. Guillamon, J. M. 2014. The fitness advantage of commercial wine yeasts in relation to the nitrogen concentration, temperature, and ethanol content under microvinification conditions. Appl. Environ. Microbiol., vol. 80, no. 2, p. 704-713. https://doi.org/10.1128/AEM.03405-13

Garofalo, C., Arena, M., Laddomada, B., Cappello, M., Bleve, G., Grieco, F., Capozzi, V. 2016. Starter cultures for sparkling wine. Fermentation, vol. 2, no. 4, p. 1-16. https://doi.org/10.3390/fermentation2040021

Goddard, M. R. 2008. Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation. Ecology, vol. 89, no. 8, p. 2077-2082. https://doi.org/10.1890/07-2060.1

Guo, Y. Y., Yang, Y. P., Peng, Q. Han, Y. 2015. Biogenic amines in wine: A review. International Journal of Food Science & Technology, vol. 50, no. 7, p. 1523-1532. https://doi.org/10.1111/ijfs.12833

Gutiérrez, A. R., López, R., Santamaría, M. P. Sevilla, M. J. 1997. Ecology of inoculated and spontaneous fermentations in Rioja (Spain) musts, examined by mitochondrial DNA restriction analysis. International journal of food microbiology, vol. 36, no. 2-3, p. 241-245. https://doi.org/10.1016/S0168-1605(97)01258-0

Henriques, D., Alonso-del-Real, J., Querol, A. Balsa-Canto, E. 2018. Saccharomyces cerevisiae and S. kudriavzevii synthetic wine fermentation performance dissected by predictive modeling. Frontiers in microbiology, vol. 9, p. 88. https://doi.org/10.3389/fmicb.2018.00088

Henríquez-Aedo, K., Durán, D., Garcia, A., Hengst, M. B. Aranda, M. 2016. Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of chilean red wines. LWT-Food Science and Technology, vol. 68, p. 183-189. https://doi.org/10.1016/j.lwt.2015.12.003

Huong, T. T., Komínková, M., Guráň, R., Ruttkay-Nedecký, B., Kopel, P., Libuše, T., Ondřej, Z., Adam, V. René, K. 2014. Identification of microorganisms by MALDI-TOF MS. Journal of Metallomics and Nanotechnologies, vol. 1, p. 64-66.

Jarolímková, T. 2017. Laboratorní posouzení odpadního kalu z ČOV (Laboratory assessment of sewage sludge from WWTP) : diploma thesis. Praha, Czech Republic : VŠCHT, 37 p. (In Czech)

Lucio, O., Pardo, I., Heras, J., Krieger‐Weber, S. Ferrer, S. 2017. Use of starter cultures of Lactobacillus to induce malolactic fermentation in wine. Australian journal of grape and wine research, vol. 23, no. 1, p. 15-21. https://doi.org/10.1111/ajgw.12261

Mannazzu, I., Clementi, F. Ciani, M. 2002. Strategies and criteria for the isolation and selection of autochthonous starters. Biodiversity and biotechnology of wine yeasts, p. 19-34.

Marklein, G., Josten, M., Klanke, U., Müller, E., Horre, R., Maier, T., Wenzel, T., Kostrzewa, M., Bierbaum, G. Hoerauf, A. 2009. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. Journal of clinical microbiology, vol. 47, no. 9, p. 2912-2917. https://doi.org/10.1128/JCM.00389-09

Martini, A., Ciani, M. Scorzetti, G. 1996. Direct enumeration and isolation of wine yeasts from grape surfaces. American journal of enology and viticulture, vol. 47, no. 4, p. 435-440.

Mas, A., Guillamón, J. M. Beltran, G. 2016. Non-conventional Yeast in the Wine Industry. Frontiers in microbiology, vol. 7, no. p. 1494. https://doi.org/10.3389/fmicb.2016.01494

Morrison‐Whittle, P. Goddard, M. R. 2018. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environmental microbiology, vol. 20, no. 1, p. 75-84. https://doi.org/10.1111/1462-2920.13960

Nickerson, W. J. 1953. Reduction of inorganic substances by yeasts I. Extracellular reduction of sulfite by species of Candida. The Journal of Infectious Diseases, vol. 93, no. 1, p. 43-56. https://doi.org/10.1093/infdis/93.1.43

Pérez-Torrado, R., Rantsiou, K., Perrone, B., Navarro-Tapia, E., Querol, A. Cocolin, L. 2017. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Scientific reports, vol. 7, p. 43603. https://doi.org/10.1038/srep43603

Perrone, B., Giacosa, S., Rolle, L., Cocolin, L. Rantsiou, K. 2013. Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. International journal of food microbiology, vol. 165, no. 2, p. 156-162. https://doi.org/10.1016/j.ijfoodmicro.2013.04.023

Petruzzi, L., Capozzi, V., Berbegal, C., Corbo, M. R., Bevilacqua, A., Spano, G. Sinigaglia, M. 2017. Microbial resources and enological significance: Opportunities and benefits. Frontiers in microbiology, vol. 8, p. 995. https://doi.org/10.3389/fmicb.2017.00995

Pretorius, I. S. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, vol. 16, no. 8, p. 675-729. https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B

Sabate, J., Cano, J., Querol, A., Guillamón, J. M. 1998. Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Letters in applied microbiology, vol. 26, p. 452-455. https://doi.org/10.1046/j.1472-765X.1998.00369.x

Salvadó, Z., Arroyo-López, F. N., Barrio, E., Querol, A. Guillamón, J. M. 2011. Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food microbiology, vol. 28, no. 6, p. 1155-1161. https://doi.org/10.1016/j.fm.2011.03.008

Setati, M. E., Jacobson, D., Andong, U.-C. Bauer, F. 2012. The vineyard yeast microbiome, a mixed model microbial map. PloS one, vol. 7, no. 12, p. e52609. https://doi.org/10.1371/journal.pone.0052609

Schuller, D., Cardoso, F., Sousa, S., Gomes, P., Gomes, A. C., Santos, M. A. Casal, M. 2012. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PloS one, vol. 7, no. 2, p. e32507. https://doi.org/10.1371/journal.pone.0032507

Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. Goddard, M. R. 2014. Pyrosequencing reveals regional differences in fruit‐associated fungal communities. Environmental microbiology, vol. 16, no. 9, p. 2848-2858. https://doi.org/10.1111/1462-2920.12456

Tofalo, R., Perpetuini, G., Schirone, M., Fasoli, G., Aguzzi, I., Corsetti, A. Suzzi, G. 2013. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods. Frontiers in microbiology, vol. 4, p. 166. https://doi.org/10.3389/fmicb.2013.00166

Torija, M. J., Rozes, N., Poblet, M., Guillamón, J. M. Mas, A. 2001. Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie van Leeuwenhoek, vol. 79, no. 3-4, p. 345-352. https://doi.org/10.1023/A:1012027718701

Valero, E., Cambon, B., Schuller, D., Casal, M. Dequin, S. 2007. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS yeast research, vol. 7, no. 2, p. 317-329. https://doi.org/10.1111/j.1567-1364.2006.00161.x

Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. Hallet, J.-N. 1995. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol., vol. 61, no. 10, p. 3521-3529. https://doi.org/10.1128/AEM.61.10.3521-3529.1995

Vezinhet, F., Hallet, J.-N., Valade, M. Poulard, A. 1992. Ecological survey of wine yeast strains by molecular methods of identification. American journal of enology and viticulture, vol. 43, no. 1, p. 83-86.

Viel, A., Legras, J.-L., Nadai, C., Carlot, M., Lombardi, A., Crespan, M., Migliaro, D., Giacomini, A. Corich, V. 2017. The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Frontiers in microbiology, vol. 8, p. 1595. https://doi.org/10.3389/fmicb.2017.01595

Published

2020-09-28

How to Cite

Holešinský, R., Průšová, B., Baroň, M., Fiala, J., Kubizniakova, P., Paulíček, V., & Sochor, J. (2020). Spontaneous fermentation in wine production as a controllable technology . Potravinarstvo Slovak Journal of Food Sciences, 14, 692–703. https://doi.org/10.5219/1280

Most read articles by the same author(s)