Effect of inoculation on the content of biogenic elements in the white lupine and grass pea

Authors

  • Erika Zetochová National Agriculture and Food Centre ”“ Research Institute of Plant Production, Bratislavská 122, 921 01 Piešťany, Slovakia, Tel.: +42133797303
  • Alena Vollmannová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel.: +421376414374 https://orcid.org/0000-0001-7470-4500
  • Ivana Tirdiľová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 94976 Nitra, Slovakia, Tel.: +421376414378 https://orcid.org/0000-0002-2055-3310

DOI:

https://doi.org/10.5219/1327

Keywords:

lupine, grass pea, inoculation, biogenic elements, analysis

Abstract

The aim of this work was to determine the influence of the inoculant on the content of biogenic elements in tenoreign varieties of white lupine (Lupinus albus) and threearieties of grass pea (Lathyrus sativus L.) of Slovak origin. Rizobine was used as the inoculum before sowing. Dried and homogenised seed samples were mineralised using concentrated HNO3 using the MARS X - Press 5 instrument. Analytical determination of macro- and microelements in all samples was performed using ARIAN DUO 240FS/240Z atomic absorption spectrometer. The determined values of biogenic elements content were expressed as mg.kg-1 of dry matter. The average content of Cu was lower for both crops in variant A compared to variant B. The addition of the inoculant increased the content of Cu in both crops in lupine by 3.7% and grass pea by 10.94%. The Zn content of variant A in lupine was 19.14% higher than that of the grass pea. Grass pea seeds contained 97.76% less Mn than white lupine seeds in both variants. The Cr content of white lupine was 67.74% higher in variant A than in grass pea. The inoculant also increased the content of Cr in lupine by 25.0%. Lupine contained 30.02% less Fe in variant A and 41.27% less Fe in variant B than the grass pea. The results we have obtained show that Ca, K, and P are the predominant elements in the seeds of grass pea in both variants. By comparing selected types of legumes we found that the grass pea features a higher content of Cu, Fe, K, and P. The analysed seeds of white lupine had a higher content of Zn, Mn, Cr, Ni, Co, Na, Ca, and Mg. In conclusion, inoculation does not significantly affect the content of biogenic elements of selected legume species.

Downloads

Download data is not yet available.

References

Alsafwah, S., LaGuardia, S. P., Arroyo, M., Dockery, B. K., Bhattacharya, S. K., Ahokas, R. A., Newman, K. P. 2007. Congestive Heart Failure is a Systemic Illness: A Role for Minerals and Micronutrients. Clinical medicine and research, vol. 5, no. 4, p. 238-243. https://doi.org/10.3121/cmr.2007.737

Cabrera, C., Lloris, F., Giménez, R., Olalla, M., López, M. C. 2003. Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Science of the Total Environment, vol. 308, no. 1-3, p. 1-14. https://doi.org/10.1016/S0048-9697(02)00611-3

Dahale, S. K., Prashanthi, S. K., Krishnaraj, P. U. 2016. Rhizobium Mutant Deficient in Mineral Phosphate Solubilization Activity Shows Reduced Nodulation and Plant Growth in Green Gram. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, vol. 86, no. 3, p. 723-734. https://doi.org/10.1007/s40011-015-0500-6

Ehsan, M., Lara Viveros, F. M., Hernández, V. E., Barakat, M. A., Ortega, A. R., Maza, A. V., Monter, J. V. 2015. Zinc and cadmium accumulation by Lupinus uncinatus Schldl. grown in nutrient solution. International Journal of Environmental Science and Technology, vol. 12, p. 307-316. https://doi.org/10.1007/s13762-013-0456-0

Esteban, E., Moreno, E., Peñalosa, J., Cabrero, J. I., Millán, R., Zornoza, P. 2008. Short and long-term uptake of Hg in white lupin plants: Kinetics and stress indicators. Environmental and Experimental Botany, vol. 62, no. 3, p. 316-322. https://doi.org/10.1016/j.envexpbot.2007.10.006

Fell, G. S., Lyon, T. D. B. 1994. Zinc. In Herber, R. F. M., Stoeppler, M. Trace Element Analysis in Biological Specimens. London, UK : Elsevier, 576 p. https://doi.org/10.1016/S0167-9244(08)70167-7

Glew, R. H., Vanderjagt D. J., Lockett, C., Grivetti, L. E., Smith, G. C., Pastuszyn, A., Millson, M. 1997. Amino Acid, Fatty Acid, and Mineral Composition of 24 Indigenous Plants of Burkina Faso. Journal of Food Composition and Analysis, vol. 10, no. 3, p. 205-217. https://doi.org/10.1006/jfca.1997.0539

Grela, E. R., Samolińska, W., Kiczorowska, B., Klebaniuk, R., Kiczorowski, P. 2017. Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seed. Biological Trace Element Research, vol. 180, p. 338-348. https://doi.org/10.1007/s12011-017-1005-3

Gruchow, H. W., Sobocinski, K. A., Barboriak, J. J. 1988. Calcium intake and the relationship of dietary sodium and potassium to blood pressure. The American Journal of Clinical Nutrition, vol. 48, no. 6, p. 1463-1470. https://doi.org/10.1093/ajcn/48.6.1463

Hung, T. V., Handson, P. D., Amenta, V. C., Kyle, W. S. A., Yu, R. S. T. 1987. Content and distribution of manganese in lupin seed grown in Victoria and in lupin flour, spray-dried powder and protein isolate prepared from the seeds. Journal of the Science of Food and Agriculture, vol. 41, no. 2, p. 131-139. https://doi.org/10.1002/jsfa.2740410206

Kirbaşlar, F. G., Türker, G., Özsoy-Güneş, Z., Ünal, M., Dülger, B., Ertaş, E., Kizilkaya, B. 2012. Evaluation of Fatty Acid Composition, Antioxidant and Antimicrobial Activity, Mineral Composition and Calorie Values of Some Nuts and Seeds from Turkey. Records of Natural Products, vol. 6, no. 4, p. 339-349.

Kumar, P., Dubey, R. C., Maheshwari, D. K., Bajpai, V. K. 2016. ACC Deaminase producing Rhizobium leguminosarum RPN5 isolated from root nodules of Phaseolus vulgaris L. Bangladesh Journal of Botany, vol. 45, no. 3, p. 477-484.

Martínez-Villaluenga, C., Frías, J., Vidal-Valverde, C. 2006. Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chemistry, vol. 98, no. 2, p. 291-299. https://doi.org/10.1016/j.foodchem.2005.05.074

Morel, M. A., Braña, V., Castro-Sowinski, S. 2012. Legume Crops, Importance and Use of bBcterial Inoculation to Increase Production. Crop Plant, p. 217-240.

Nagati, V., Koyyati, R., Marx, P., Chinnapaka, V. D., Padigya, P. R. M. 2015. Effect of heavy metals on seed germination and plant growth on Grass pea plant (Lathyrus sativus). International Journal of PharmTech Research, vol. 7, no. 3, p. 528-534.

O´Dell, B. L., Sunde, R. A. 1997. Handbook of nutritionally essential mineral elements. New York, US : Marcel Dekker, 712 p.

Özcan, M. M., Dursun, N., Al Juhaimi, F. 2013. Macro- and microelement contents of some legume seeds. Environmental Monitoring and Assessment, vol. 185, p. 9295-9298. https://doi.org/10.1007/s10661-013-3252-x

Page, V., Weisskopf, L., Feller, U. 2006. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytologist, vol. 171, no. 2, p. 329-341. https://doi.org/10.1111/j.1469-8137.2006.01756.x

Peix, A., Ramírez-Bahena, M. H., Velázquez, E., Bedmar, E. J. 2015. Bacterial Associations with Legumes. Critical Reviews in Plant Sciences, vol. 34, no. 1-3, p. 17-42. https://doi.org/10.1080/07352689.2014.897899

Peix, A., Velázquez, E., Silva L. R., Mateos, P. F. 2010. Key Molecules Involved in Beneficial Infection Process in Rhizobia-Legume Symbiosis. In Khan, M. S., Mussarrat, J., Zaidi, A. Microbes for Legume Improvement. Berlin, Germany : Springer, p. 55-79. ISBN 978-3-211-99753-6. https://doi.org/10.1007/978-3-211-99753-6_3

Rajurkar, N. S., Damame, M. M. 1997. Elemental Analysis of some herbal plants used in the treatment of cardiovascular diseases by NAA and AAS. Journal of Radioanalytical and Nuclear Chemistry, vol. 219, no. 1, p. 77-80. https://doi.org/10.1007/BF02040269

Saleh-E-In, M. M., Sultana, A., Hossain, M. A., Ahsan, M., Roy, S. K. 2008. Macro and micro elemental analysis of Anethum Sowa L. (Dill) stem by X-ray fluorescence spectrometry. Bangladesh Journal of Scientific and Industrial Research, vol. 43, no. 4, p. 483-494. https://doi.org/10.3329/bjsir.v43i4.2238

Tharanathan, R. N., Mahadevamma, S. 2003. Grain legumes – a boon to human nutrition. Trends in Food Science and Technology, vol. 14, no. 12, p. 507-518. https://doi.org/10.1016/j.tifs.2003.07.002

Tichá, M., Vyzínová, P. 2006. Polní plodiny (Field crops). Brno Czech republic : VFU, 44 p. (In Czech)

Trumbo, P., Yates, A. A, Schlicker, S., Poos, M. 2001. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Journal of the American Dietetic Association, vol. 101, no. 3, p. 294-301.

Uzun, B., Arslan, C., Karhan, M., Toker, C. 2007. Fat and fatty acids of white lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chemistry, vol. 102, no. 1, p. 45-49. https://doi.org/10.1016/j.foodchem.2006.03.059

Vaz Patto, M. C., Skiba, B., Pang, E. C. K., Ochatt, S. J., Lambein, F., Rubiales, D. 2006. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica, vol. 147, p. 133-147. https://doi.org/10.1007/s10681-006-3607-2

Velíšek, J. 1999. Chemie potravin 3 (Food chemistry 3). Tábor, Czech republic : OSSIS. 368 p. ISBN 80-902391-5-3. (In Czech)

Welch, R. M., Graham, R. D. 2002. Breeding crops for enhanced micronutrient content. In Adu-Gyamfi, J. J. Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities. Developments in Plant and Soll Sciences. Dodrecht, Netherland : Springer, p. 267-276. ISBN 978-94-017-1570-6. https://doi.org/10.1007/978-94-017-1570-6_29

Welna, M., Klimpel, M., Zyrnicki, W. 2008. Investigation of major and trace elements and their distributions between lipid and non-lipid fractions in Brazil nuts by inductively coupled plasma atomic optical spectrometry. Food Chemistry, vol. 111, no. 4, p. 1012-1015. https://doi.org/10.1016/j.foodchem.2008.04.067

White, P. J., Broadley, M. R. 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science, vol. 10, no. 12, p. 586-593. https://doi.org/10.1016/j.tplants.2005.10.001

Williams, M. 2006. Dietary Supplements and Sports Performance: Metabolites, Constituents, and Extracts. Journal of the International Society of Sports Nutrition, vol. 3, no. 2, 5 p. https://doi.org/10.1186/1550-2783-3-2-1

Ximénez-Embún, P., Madrid-Albarrán, Y., Cámara, C., Cuadrado, C., Burbano, C., Múzquiz, M. 2001. Evaluation of Lupinus Species to Accumulate Heavy Metals from Waste Waters. International Journal of Phytoremediation, vol. 3, no. 4, p. 369-379. https://doi.org/10.1080/15226510108500065

Published

2020-06-28

How to Cite

Zetochová, E., Vollmannová, A., & Tirdiľová, I. (2020). Effect of inoculation on the content of biogenic elements in the white lupine and grass pea. Potravinarstvo Slovak Journal of Food Sciences, 14, 385–392. https://doi.org/10.5219/1327

Most read articles by the same author(s)

1 2 > >>