Dietary supplementation with magnesium citrate may improve pancreatic metabolic indices in an alloxan-induced diabetes rat model

Authors

  • Olena Shatynska Ternopil National Medical University, Department of Medical Biochemistry, Maidan Voli 1, 46001, Ternopil, Ukraine, Tel: +380973423525 https://orcid.org/0000-0001-5135-8043
  • Oleksandr Tokarskyy Ternopil National Medical University, Department of Medical Biochemistry, Maidan Voli 1, 46001, Ternopil, Ukraine, Tel: +380964102536 https://orcid.org/0000-0001-6279-1803
  • Petro Lykhatskyi Ternopil National Medical University, Department of Medical Biochemistry, Maidan Voli 1, 46001, Ternopil, Ukraine, Tel: +380974433614
  • Olha Yaremchuk Ternopil National Medical University, Department of Medical Biochemistry, Maidan Voli 1, 46001, Ternopil, Ukraine, Tel: +380961398994 https://orcid.org/0000-0001-5951-1137
  • Iryna Bandas Ternopil National Medical University, Department of Medical Biochemistry, Maidan Voli 1, 46001, Ternopil, Ukraine, Tel: +380977982333
  • Andrii Mashtalir Ternopil National Medical University, Department of Higher Education Pedagogy and Social Sciences, Doroshenko Street 7, 46001, Ternopil, Ukraine, Tel: +380671482843

DOI:

https://doi.org/10.5219/1375

Keywords:

alloxan, diabetes, rat model, magnesium oral supplementation, pancreas

Abstract

The purpose of the current study was to evaluate the protective properties of dietary magnesium supplementation on pancreatic tissue of rats with alloxan-induced diabetes mellitus. Twenty-five male Wistar rats were split into five groups (control, diabetes, diabetes with 100 mg Mg daily, diabetes with 250 mg Mg daily, diabetes with 500 mg Mg daily) with feeding supplementation starting on day 1, diabetes induction on day 21, and animal sacrifice on day 30. Fasting glucose in blood serum was measured on days 21, 25, 27, and day 30. Glucose metabolism enzymes, namely, lactate dehydrogenase and glucose-6-phosphate dehydrogenase, were measured in pancreatic tissue upon the sacrifice, as well as lipid peroxidation, antioxidant system protective enzymes (catalase and superoxide dismutase), and glutathione system components (glutathione reductase, glutathione peroxidase, and glutathione reduced). Pearson correlation coefficients showed strong negative correlation between serum glucose (control and diabetic animals) and glucose metabolism enzymes, catalase, superoxide dismutase, glutathione peroxidase in pancreatic tissue (r >-0.9, p <0.05), moderate negative correlation with reduced glutathione (r = -0.79, p <0.05), moderate positive correlation with lipid peroxidation index
(r = +0.67, p <0.05), weak correlation with glutathione reductase (r = -0.57, p <0.05). Magnesium supplementation slowed down diabetes onset considering fasting glucose levels in rats (p <0.05), as well as partially restored investigated dehydrogenase levels in the pancreas of rats comparing to diabetes group (p <0.05). The lipid peroxidation index varied between treatments showing the dose-dependent influence of Mg2+. Magnesium supplementation partially restored catalase and superoxide dismutase activities in pancreatic tissue, as well as glutathione peroxidase and reduced glutathione levels (p <0.05), while glutathione reductase levels remained unaffected (p >0.05). The obtained results suggested a model, where magnesium ions may have a possible protective effect on pancreatic tissue against the negative influence of alloxan inside β cells of the pancreas.

Downloads

Download data is not yet available.

References

Abayomi, A. I., Adewoye, E. O., Olaleye, S. B., Salami, A. T. 2011. Effect of magnesium pre-treatment on alloxan induced hyperglycemia in rats. African Health Sciences, vol. 11, no. 1, p. 79-84.

Ankur, R., Shahjad, A. 2012. Alloxan Induced Diabetes: Mechanisms and Effects. International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 3, no. 2, p. 819-823.

Atwater, I., Frankel, B. J., Rojas, E., Grodsky, G. M. 1983. ß cell membrane potential and insulin release; role of calcium and calcium:magnesium ratio. Quarterly Journal of Experimental Physiology, vol. 68, no. 2, p. 233-245. https://doi.org/10.1113/expphysiol.1983.sp002715

Beutler, E., Duron, O., Kelly, B. M. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, vol. 61, p. 882-888.

Biddinger, S. B., Kahn, C. R. 2006. From mice to men: insights into the insulin resistance syndromes. Annual Review of Physiology, vol. 68, p. 123-158. https://doi.org/10.1146/annurev.physiol.68.040104.124723

Carlberg, I., Mannervik, B. 1985. Glutathione reductase. Methods in Enzymology, vol. 113, p. 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4

de Baaij, J. H. F, Hoenderop, J. G. J., Bindels, R. J. M. 2015. Magnesium in man: implications for health and disease. Physiological Reviews, vol. 95, no. 1, p. 1-46. https://doi.org/10.1152/physrev.00012.2014

Dong, J. Y., Xun, P., He, K., Qin, L. Q. 2011. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care, vol. 34, no. 9, p. 2116-2122. https://doi.org/10.2337/dc11-0518

Durak, I., Yurtarslanl, Z., Canbolat, O., Akyol, Ö. 1993. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clinica Chimica Acta, vol. 214, no. 1, p. 103-114. https://doi.org/10.1016/0009-8981(93)90307-p

Evans, G. O. 2009. Animal clinical chemistry: a practical handbook for toxicologists and biomedical researchers. 2nd ed. Boca Raton, FL, USA : CRC Press, 368 p. ISBN 9781420080117.

Gasparovic, A. C., Jaganjac, M., Mihaljevic, B., Sunjic, S. B., Zarkovic, N. 2013. Assays for the measurement of lipid peroxidation. In Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. Cell Senescence. Methods in Molecular Biology (Methods and Protocols). Totowa, NJ, USA : Humana Press, p. 283-296. ISBN 978-1-62703-238-4. https://doi.org/10.1007/978-1-62703-239-1_19

Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M., de Baaij, J. H. F. 2016. Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes, vol. 65, no. 1, p. 3-13. https://doi.org/10.2337/db15-1028

Góth, L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, vol. 196, no. 2-3, p. 143-151. https://doi.org/10.1016/0009-8981(91)90067-M

Grankvist, K., Marklund, S., Sehlin, J., Täljedal, I. B. 1979. Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochemical Journal, vol. 182, no. 1, p. 17-25. https://doi.org/10.1042/bj1820017

Guerrero-Romero, F., Rodríguez-Morán, M. 2011. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial. European Journal of Clinical Investigation, vol. 41, no. 4, p. 405-410. https://doi.org/10.1111/j.1365-2362.2010.02422.x

Hsu, J. M., Rubenstein, B., Paleker, A. G. 1982. Role of magnesium in glutathione metabolism of rat erythrocytes. The Journal of Nutrition, vol. 112, no. 3, p. 488-496. https://doi.org/10.1093/jn/112.3.488

Chaudhary, D. P., Boparai, R. K., Bansal, D. D. 2007. Implications of oxidative stress in high sucrose low magnesium diet fed rats. European Journal of Nutrition, vol. 46, p. 383-390. https://doi.org/10.1007/s00394-007-0677-4

Chaudhary, D. P., Sharma, R., Bansal, D. D. 2010. Implications of magnesium deficiency in type 2 diabetes: a review. Biological Trace Element Research, vol. 134, p. 119-129. https://doi.org/10.1007/s12011-009-8465-z

Ige, O. A., Adewoye, E. O., Olaleye, S. B., Salami, A. T. 2010. Pretreatment effect of magnesium on alloxan induced hyperglycemia in rats. African Journal of Medicine and Medical Sciences, vol. 39, p. 103-107.

Ighodaro, O. M., Adeosun, A. M., Akinloye, O. A. 2017. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina, vol. 53, no. 6, p. 365-374. https://doi.org/10.1016/j.medici.2018.02.001

Kumar, B. P., Shivakumar, K. 1997. Depressed antioxidant defense in rat heart in experimental magnesium deficiency implications for the pathogenesis of myocardial lesions. Biological Trace Element Research, vol. 60, p. 139-144. https://doi.org/10.1007/BF02783317

Lenzen, S. 2008. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, vol. 51, p. 216-226. https://doi.org/10.1007/s00125-007-0886-7

Lowry, O. H., Rosebrough, N., Lewis Farr, A., Randall, R. 1951. Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry, vol. 193, p. 265-275.

Lykhatskyi, P., Fira, L., Garlitska, N., Fira, D., Soroka, Y., Lisnychuk, N., Delibashvili, D. 2019. Changes of cytolysis indicators in rats' blood resulted from simultaneous intoxication with tobacco smoke and sodium nitrite after using mildronate. Georgian medical news, vol. 296, p. 96-102.

Mihaljević, B., Katušin-Ražem, B., Ražem, D. 1996. The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Radical Biology and Medicine, vol. 21, no. 1, p. 53-63. https://doi.org/10.1016/0891-5849(95)02224-4

Moin, V. M. 1996. Simple and specific method of determination of glutathione peroxidase activity in erythrocytes. Laboratory Practice, no. 12, p. 724-727.

Molnes, J., Teigen, K., Aukrust, I., Bjørkhaug, L., Søvik, O., Flatmark, T., Njølstad, P. R. 2011. Binding of ATP at the active site of human pancreatic glucokinase-nucleotide-induced conformational changes with possible implications for its kinetic cooperativity. The FEBS Journal, vol. 278, no. 13, p. 2372-2386. https://doi.org/10.1111/j.1742-4658.2011.08160.x

Munday, R. 1988. Dialuric acid autoxidation. Effects of transition metals on the reaction rate and on the generation of ‘active oxygen’ species. Biochemical Pharmacology, vol. 37, no. 3, p. 409-413. https://doi.org/10.1016/0006-2952(88)90207-9

Paxton, R., Ye, L. 2005. Regulation of heart insulin receptor tyrosine kinase activity by magnesium and spermine. Molecular and Cellular Biochemistry, vol. 277, p. 7-17. https://doi.org/10.1007/s11010-005-5755-4

Pham, P. C., Pham, P. M. T., Pham, S. V., Miller, J. M., Pham, P. T. T. 2007. Hypomagnesemia in patients with type 2 diabetes. Clinical Journal of the American Society of Nephrology, vol. 2, no. 2, p. 366-373. https://doi.org/10.2215/CJN.02960906

Ponti, V., Dianzani, M. U., Cheeseman, K., Slater, T. F. 1978. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chemico-Biological Interactions, vol. 23, no. 3, p. 281-291. https://doi.org/10.1016/0009-2797(78)90090-x

Rahman, I., Kode, A., Biswas, S. K. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, vol. 1, no. 6, p. 3159-3165. https://doi.org/10.1038/nprot.2006.378

Rodriguez-Moran, M., Guerrero-Romero, F. 2004. Elevated concentrations of TNF-alpha are related to low serum magnesium levels in obese subjects. Magnesium Research, vol. 17, p. 189-196.

Rodríguez-Morán, M., Guerrero-Romero, F. 2011. Insulin secretion is decreased in non-diabetic individuals with hypomagnesaemia. Diabetes Metabolism Research and Reviews, vol. 27, no. 6, p. 590-596. https://doi.org/10.1002/dmrr.1206

Sevela, M., Tovarek J. 1959. Method for the estimation of lactic dehydrogenase. Casopis Lekaru Ceskych, vol. 98, no. 27, p. 844-848.

Solaimani, H., Soltani, N., MaleKzadeh, K., Sohrabipour, S., Zhang, N., Nasri, S., Wang, Q. 2014. Modulation of GLUT4 expression by oral administration of Mg(2+) to control sugar levels in STZ-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, vol. 92, no. 6, p. 438-444. https://doi.org/10.1139/cjpp-2013-0403

Suárez, A., Pulido, N., Casla, A., Casanova, B., Arrieta, F. J., Rovira, A.1995. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia, vol. 38, p. 1262-1270. https://doi.org/10.1007/bf00401757

Szkudelski, T. 2001. The mechanism of alloxan and streptozotocin action in b cells of the rat pancreas. Physiological Research., vol. 50, no. 6, p. 537-546.

Tiedge, M., Lortz, S., Drinkgern, J., Lenzen, S. 1997. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes, vol. 46, p. 1733-1742. https://doi.org/10.2337/diabetes.46.11.1733

Tokarskyy, O., Marshall, D. L., Schilling, M. W., Willeford, K. O. 2009. Comparison of methods to verify end point cooking temperature of channel catfish (ictalurus punctatus) fillets. Journal of Muscle Foods, vol. 20, no. 3, p. 325-340. https://doi.org/10.1111/j.1745-4573.2009.00151.x

Wagner, C. D., Clever, H. L., Peters, E. D. 1947. Evaluation of ferrous thiocyanate colorimetric method. Analytical Chemistry, vol. 19, no. 12, p. 980-982. https://doi.org/10.1021/ac60012a011

Weglicki, W. B., Phillips, T. M., Freedman, A. M., Cassidy, M. M., Dickens, B. F. 1992. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Molecular and Cellular Biochemistry, vol. 110, p. 169-173. https://doi.org/10.1007/bf02454195

Winterbourn, C. C., Munday, R. 1989. Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH formation. Biochemical Pharmacology, vol. 38, no. 2, p. 271-277. https://doi.org/10.1016/0006-2952(89)90037-3

WHO. 2018. Diabetes. Fact sheets. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 03/03/2020

Xu, Y., Osborne, B. W., Stanton, R. C. 2005. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. American Journal of Physiology - Renal Physiology, vol. 289, no. 5, p. F1040-F1047. https://doi.org/10.1152/ajprenal.00076.2005

Yaremchuk, O. Z., Posokhova, K. A. 2011. The liver and kidneys biochemical in dicesat the experiment al pancreatitis in case of the administration of nitric oxide synthesis modulators and recombinant superoxide dismutase. Ukrain'skyi Biokhimichnyi Zhurnal, vol. 83, no. 4, p. 57-66.

Published

2020-09-28

How to Cite

Shatynska, O. ., Tokarskyy, O., Lykhatskyi, P., Yaremchuk, O., Bandas, I., & Mashtalir, A. (2020). Dietary supplementation with magnesium citrate may improve pancreatic metabolic indices in an alloxan-induced diabetes rat model. Potravinarstvo Slovak Journal of Food Sciences, 14, 836–846. https://doi.org/10.5219/1375