Antimicrobial potential of different medicinal plants against food industry pathogens

Authors

  • Miroslava Kačániová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit Growing, Viticulture and Enology, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4715, Rzeszow University, Institute of Agricultural Sciences, Land Management and Environmental Protection, Department of Bioenergetics, Food Analysis and Microbiology, Cwiklinskiej 1, Rzeszow 35-601 Poland https://orcid.org/0000-0002-4460-0222
  • Jana Žiarovská Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4244
  • Simona Kunová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 5807
  • Katarí­na Rovná Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Planting Design and Maintenance, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 5434 https://orcid.org/0000-0001-5835-4547
  • Tatsiana Savitskaya Belarusian State University, Research Institute of Physicochemical Problems, Leningradskaya str., 14, Minsk, 220030, Belarus
  • Dzmitry Hrinshpan Belarusian State University, Research Institute of Physicochemical Problems, Leningradskaya str., 14, Minsk, 220030, Belarus
  • Veronika Valková Slovak University of Agriculture, AgroBioTech Research Centre, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4928 https://orcid.org/0000-0001-7048-6323
  • Lucia Galovičová Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit Growing, Viticulture and Enology, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4715 https://orcid.org/0000-0002-1203-4115
  • Petra Borotová Slovak University of Agriculture, AgroBioTech Research Centre, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4915 https://orcid.org/0000-0003-0278-4323
  • Eva Ivanišová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Technology and Quality of Plant Products, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421 37 641 4421 https://orcid.org/0000-0001-5193-2957

DOI:

https://doi.org/10.5219/1387

Keywords:

medicinal plants, antibacterial effect, Gram-positive and Gram-negative bacteria, disc diffusion method, MIC

Abstract

Work aimed to investigate the antimicrobial activity of medicinal plants against selected species of food industry pathogens in vitro conditions. The detection of antibacterial properties was examined by the disc diffusion method and the method of the minimum inhibitory concentrations (MIC). The cultivation of microorganisms after the 24 h was performed by disc diffusion method. Petri dishes have grown at 37 °C in which the Mueller - Hinton agar and application it to the sterile paper disc impregnated with the extract.  The thickness of the resulting inhibition zone was measured with a ruler after completion of the culture. After the preparation of bacteria and extracts of certain concentrations of a subsequently added to wells microplates we use the method of the minimum inhibitory concentration (MIC) which was conducted out as the second measurement, and we took the readings absorbance spectrophotometer at 570 nm using the Glomax plate spectrophotometer. We found out, that Equisetum arvense demonstrated the largest zones of inhibition to the tested Gram-positive and Gram-negative bacteria. The greatest antimicrobial activity achieved Equisetum arvense, Urtica dioica, and Taraxacum officinale against Salmonella enterica subsp. enterica CCM 3807 and Yersinia enterocolitica CCM 5671. Equisetum arvense and Taraxacum officinale was the most effective against Escherichia coli CCM 2024 and the least effective were Tussilago farfara and Mentha piperita with using the method of minimum inhibitory concentrations.

Downloads

Download data is not yet available.

References

Ahmadi, L., Mirza, M. 1999. Essential Oil of Salvia multicaulis Vahl from Iran. Journal of Essential Oil Research, vol. 11, no. 3, p. 289-290. https://doi.org/10.1080/10412905.1999.9701136

Ahmed, A. A., Zain, U., Abjuluziz, M. A., Rius, U., Iubul, H. Muhammad, T. 2012. Evaluation of the chemical composition and element analysis of Urtica dioica. African Journal of Pharmacy, vol. 6, no. 21, p. 1555-1558. https://doi.org/10.5897/AJPP12.268

Baser, K. H. C., Duman, H., Vural, M., Adigüzel, N., Aytaç, Z. 1997. Essential Oil of Salvia aytachii M. Vural et N. Adigüzel. Journal of Essential Oil Research, vol. 9, no. 4, p. 489-490. https://doi.org/10.1080/10412905.1997.9700760

Baser, K. H. C., Özek, T., Kirimer, N., Tümen, G. 1993. The Essential Oil of Salvia pomifera L. Journal of Essential Oil Research, vol. 5, no. 3, p. 347-348. https://doi.org/10.1080/10412905.1993.9698237

Bisht, S., Bhandari, S., Bisht, N. S. 2012. Urtica dioica (L): an undervalued, economically important plant. Agricultural Science Research Journals, vol. 2, no. 5, p. 250-252.

Bodros, E., Baley, C. 2008. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters, vol. 62, no. 14, p. 2143-2145. https://doi.org/10.1016/j.matlet.2007.11.034

Bown, D. 2001. The Herb Society of America New encyclopedia of herbs and their uses. New York : Dorling Kindersley, 424 p. ISBN-13 9780789480316

Bühringová, U. 2010. All about medicinal plants. (Všetko o liečivých rastlinách). Bratislava, Slovakia : Ikar, 360 p. ISBN-13 9788055119557. (In Slovak)

Četojević-Simin, D. D., Čanadanović-Brunet, J. M., Bogdanović, G. M., Djilas, S. M., Ćetković, G. S., Tumbas, V. T., Stojiljković, B. T. 2010. Antioxidative and Antiproliferative Activities of Different Horsetail (Equisetum Arvense L.) Extracts. Journal of Medicinal Food, vol. 13, no. 2, p. 452-459. https://doi.org/10.1089/jmf.2008.0159

Dar, S. A., Yousuf, A. R., Ganai, F. A., Sharma, P., Kumar, N., Singh, R. 2012. Bioassay guided isolation and identification of anti-inflammatory and anti-microbial compounds from Urtica dioica L. (Uriticaceae) leaves. African Journal of Biotechnology, vol. 11, no. 65, p. 12410-12420. https://doi.org/10.5897/ajb11.3753

Darouche, R. O., Mansouri, M. D., Kojic, E. M. 2006. Antifungal activity of antimicrobial-impregnated devices. Clinical Microbiology and Infection, vol. 12, no. 4, p. 397-399. https://doi.org/10.1111/j.1469-0691.2006.01369.x

Dastmalchi, K., Dorman, H. J. D., Oinonen, P. P., Darwis, Y., Laakso, I., Hiltunen, R. 2008. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Science and Technology, vol. 41, no. 3, p. 391-400. https://doi.org/10.1016/j.lwt.2007.03.007

Dejani, N. N., Souza, L. C., Oliveira, S. R. P., Neris, D. M., Rodolpho, J. M. A., Correia, R. O., Rodrigues, V., Sacramento, L. V. S., Faccioli, L. H., Afonso, A., Anibal, F. F. 2014. Immunological and parasitological parameters in Schistosoma mansoni-infected mice treated with crude extract from the leaves of Mentha x piperita L. Immunobiology, vol. 219, no. 8, p. 627-632. https://doi.org/10.1016/j.imbio.2014.03.015

Dos Santos, J. G., Blanco, M. M., Do Monte, F. H. M., Russi, M., Lanziotti, V. M. N. B., Leal, L. K. A. M., Cunha, G. M. 2005. Sedative and Anticonvulsant Effects of Hydroalcoholic Extract of Equisetum Arvense. Fitoterapia, vol. 76, no. 6, p. 508-513. https://doi.org/10.1016/j.fitote.2005.04.017

Essawi, T., Srour, M. 2000. Screening of some Palestinian medicinal plants for antibacterial activity. Journal of Ethnopharmacology, vol. 70, no. 3, p. 343-349. https://doi.org/10.1016/S0378-8741(99)00187-7

Fang, X., Chang, R. C., Yuen, W. H., Zee, S. Y. 2005. Immune modulatory effects of Prunella vulgaris. International Journal of Molecular Medicine, vol. 15, no. 3, p. 491-496. https://doi.org/10.3892/ijmm.15.3.491

Gao, H., Huang, Y.-N., Gao, B., Xu, P.-Y., Inagaki, C., Kawabata, J. 2008. α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chemistry, vol. 106, no. 3, p. 1195-1201. https://doi.org/10.1016/j.foodchem.2007.07.064

Ghaima, K.K., 2013. Antibacterial and wound healing activity of some Agrimonia eupatoria extracts. Baghdad Science Journal, vol. 10, no. 1, p. 152-160. https://doi.org/10.21123/bsj.10.1.152-160

Hammer, K. A., Carson, C. F., Riley, T. V. 1999. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, vol. 86, no. 6, p. 985-990. https://doi.org/10.1046/j.1365-2672.1999.00780.x

Hleba, L., Kačániová, M., Felšöciová, S., Pavelková, A., Rovná, K., 2013. Antibacterial activity of some wild medical plants extract to antibiotic resistant Escherichia coli. Journal of Microbiology, Biotechnology and Food Science, vol. 2, no. 1, p. 1215-1224. https://doi.org/10.1016/j.fitote.2004.09.010

Hussain, A. I., Anwar, F., Nigam, P. S., Saker, S. D., Moore, J. E., Rao, J. R., Mazumdar, A. 2011. Antimicrobial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth. LWT- Food Science and Technology, vol. 44, no. 4, p. 1199-1206. https://doi.org/10.1016/j.lwt.2010.10.005

Janovská, D., Kubíková, K., Kokoška, L. 2003. Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. Czech Journal of Food Sciences, vol. 21, no. 2, p. 107-110. https://doi.org/10.17221/3485-cjfs

Kačániová, M., Hleba, L., Petrová, J., Felšöciová, S., Pavelková, A., Rovná, K., Bobková, A., Čuboň, J. 2013. Antimicrobial activity of Tussilago farfara L. Journal of Microbiology, Biotechnology and Food Science, vol. 2, no. 1, p. 1343-1350.

Kokoska, L., Polesny, Z., Rada, V., Nepovim, A., Vanek, T. 2002. Screening of some Siberian medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, vol. 82, no. 1, p. 51-53. https://doi.org/10.1016/s0378-8741(02)00143-5

Lee, Y. J., Song, K., Cha, S. H,, Cho, S., Kim, Y. S., Park, Y. 2019. Sesquiterpenoids from Tussilago farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities. Nanomaterials, vol. 9, no. 6, p. 819. https://doi.org/10.3390/nano9060819

Li, Z.-Y., Zhi, H.-J., Zhang, F.-S., Sun, H.-F., Zhang, L.-Z., Jia, J.-P., Xing, J., Qin, X.-M. 2013. Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis. Journal of Pharmaceutical and Biomedical Analysis, vol. 75, p. 158-164. https://doi.org/10.1016/j.jpba.2012.11.023

Marino, M., Bersani, C., Comi, G. 2001. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology, vol. 67, no. 3, p. 187-195. https://doi.org/10.1016/s0168-1605(01)00447-0

Mazandarani, M., Mirdelami, S. Z., Pessarakli, M. 2013. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in Northeast of Iran. Journal of Medicinal Plants Research, vol. 7, no. 16, p. 1063-1069.

Milovanović, V., Radulović, N., Todorović, Z., Stanković, M., Stojanović, G. 2007. Antioxidant, antimicrobial and genotoxicity screening of hydroalcoholic extracts of five Serbian equisetum species. Plants Foods Human Nutrition, vol. 62, no. 3, p. 113-119. https://doi.org/10.1007/s11130-007-0050-z

Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S., Mousavi, L. 2012. Screening antimicrobial activity of various extracts of Urtica dioica. Revista de biologia tropical, vol. 60, no. 4, p. 1567-1576. https://doi.org/10.15517/rbt.v60i4.2074

Pereira, R. P., Fachinetto, R., de Souza Prestes, A., Puntel, R. L., Santos da Silva, G. N., Heinzmann, B. M., Boschetti, T. K., Athayde, M. L., Bürger, M. E., Morel, A. F., Morsch, V. M., Rocha, J. B. T. 2009. Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochemical Research, vol. 34, no. 5, p. 973-983. https://doi.org/10.1007/s11064-008-9861-z

Rabbani, M., Etemadifar, Z., Karamifard, F., Borhani, M. S. 2015. Assessment of the antimicrobial activity of Melissa officinalis and Lawsonia inermis extracts against some bacterial pathogens. Comparative Clinical Pathology, vol. 25, no. 1, p. 59-65. https://doi.org/10.1007/s00580-015-2140-x

Radulović, N., Stojanović, G., Palić, R. 2006. Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytotherapy Research, vol. 20, no. 1, p. 85-88. https://doi.org/10.1002/ptr.1815

Romeo, F. V., De Luca, S., Piscopo, A., Poiana, M. 2008. Antimicrobial Effect of Some Essential Oils. Journal of Essential Oils and Research, vol. 20, no. 4, p. 373-379. https://doi.org/10.1080/10412905.2008.9700034

Salehzadeh, A., Asadpour, L., Naeemi, A., Houshmand, E. 2014. Antimicrobial Activity of Methanolic Extracts of Sambucus ebulus and Urtica dioica Against Clinical Isolates of Methicillin Resistant Staphylococcus aureus. African Journal of Traditional, Complementary and Alternative Medicines, vol. 11, no. 5, p. 38. https://doi.org/10.4314/ajtcam.v11i5.6

Salih, N.A. 2014. Antibacterial effect of nettle (Urtica dioica). Al-Qadisiyah Journal of Veterinary Medicine Sciences, vol. 13, no. 1, p. 1. https://doi.org/10.29079/vol13iss1art270

Sandhu, N. S., Kaur, S., Chopra, D. 2010. Equisetum arvense: pharmacology and phytochemistry- a review. Asian Journal of Pharmaceutical Clinical Research, vol. 3, no. 3, pp. 146-150.

Schütz, K., Carle, R., Schieber, A. 2006a. Taraxacum – A review on its phytochemical and pharmacological profile. Journal of Ethnopharmacology, vol. 107, no. 3, p. 313-323. https://doi.org/10.1016/j.jep.2006.07.021

Spirling, L. I., Daniels, I. R. 2001. Botanical perspectives on health Peppermint: more than just an after-dinner mint. Perspectives in Public Health, vol. 121, no. 1, p. 62-63. https://doi.org/10.1177/146642400112100113

Stanojevic, D., Comic, L., Stefanovic, O., Solujic Sukdolak, S. 2010. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives. Spanish Journal of Agricultural Research, vol. 8, no. 1, p. 109. https://doi.org/10.5424/sjar/2010081-1149

Tenore, G. C., Ciampaglia, R., Arnold, N. A., Piozzi, F., Napolitano, F., Rigano, D., Senatore, F. 2011. Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus. Food and Chemical Toxicology, vol. 49, no. 1, p. 238-243. https://doi.org/10.1016/j.fct.2010.10.022

Trojanová, I., Rada, V., Kokoška, L., Vlková, E. 2004. The bifidogenic effect of Taraxacum officinale root. Fitoterapia, vol. 75, no. 7-8, p. 760-763.

Vatľák, A., Kolesárová, A., Vukovič, N., Rovná, K., Petrová, J., Vimmerová, V., Hleba, L., Mellen, M., Kačániová, M. 2014. Screening of plant extracts for antimicrobial activity against bacteria. Journal of Microbiology, Biotechnology and Food Sciences, vol. 3, no. 1, p. 177-180.

Yamamoto, Y., Inoue, T., Hamako, J. 2004. Crude proteins extracted from Equisetum arvense L. increases the viability of cancer cells in vivo. Seibutsu Shiryo Bunseki, vol. 27, no. 5, p. 409-412.

Yan, L., Meng, Q. W., Kim, I. H. 2011. The effects of dietary Houttuynia cordata and Taraxacum officinale extract powder on growth performance, nutrient digestibility, blood characteristics and meat quality in finishing pigs. Livestock Science, vol. 141, no. 2-3, p. 188-193. https://doi.org/10.1016/j.livsci.2011.05.017

Published

2020-07-28

How to Cite

Kačániová, M., Žiarovská, J., Kunová, S., Rovná, K., Savitskaya, T., Hrinshpan, D., Valková, V., Galovičová, L., Borotová, P., & Ivanišová, E. . (2020). Antimicrobial potential of different medicinal plants against food industry pathogens. Potravinarstvo Slovak Journal of Food Sciences, 14, 494–500. https://doi.org/10.5219/1387

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>