Procedures for the identification and detection of adulteration of fish and meat products

Authors

  • Jozef Čapla The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4371
  • Peter Zajác The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4371 https://orcid.org/0000-0002-4425-4374
  • Jozef Čurlej The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 5825 https://orcid.org/0000-0003-0039-5332
  • Ľubomír Belej The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 5824 https://orcid.org/0000-0001-8523-6650
  • Miroslav Kročko The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4528
  • Marek Bobko The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4113 https://orcid.org/0000-0003-4699-2087
  • Lucia Benešová The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4608
  • Silvia Jakabová The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4608 https://orcid.org/0000-0002-6981-0509
  • Tomáš Vlčko The Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Tr. A. Hlinku 2, 949 76 Nitra, Tel.: +421 37 641 4608

DOI:

https://doi.org/10.5219/1474

Keywords:

food fraud, adulteration, detection method, protein technologies, DNA technologies

Abstract

The addition or exchange of cheaper fish species instead of more expensive fish species is a known form of fraud in the food industry. This can take place accidentally due to the lack of expertise or act as a fraud. The interest in detecting animal species in meat products is based on religious demands (halal and kosher) as well as on product adulterations. Authentication of fish and meat products is critical in the food industry. Meat and fish adulteration, mainly for economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Economically motivated adulteration of food is estimated to create damage of around € 8 to 12 billion per year. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat and fish adulteration. Various analytical methods often based on protein or DNA measurements are utilized to identify fish and meat species. Although many strategies have been adopted to assure the authenticity of fish and meat and meat a fish products, such as the protected designation of origin, protected geographical indication, certificate of specific characteristics, and so on, the coverage is too small, and it is unrealistic to certify all meat products for protection from adulteration. Therefore, effective supervision is very important for ensuring the suitable development of the meat industry, and rapid, effective, accurate, and reliable detection technologies are fundamental technical support for this goal. Recently, several methods, including DNA analysis, protein analysis, and fat-based analysis, have been effectively employed for the identification of meat and fish species.

Downloads

Download data is not yet available.

References

Akasaki, T., Yanagimoto, T., Yamakami, K., Tomonaga, H., Sato, S. 2006. Species identification and PCR-RFLP analysis of cytochrome b gene in codfish (Order Gadiformes) products. Journal of Food Science, vol. 71, p. 190-195. https://doi.org/10.1111/j.1365-2621.2006.tb15616.x

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D. 1994. Molecular biology of the cell. 3rd ed. New York and London: Garland Publishing Inc., p. 1361. https://doi.org/10.1016/0307-4412(94)90059-0

Ali, M. E., Ahamad, M. N. U., Asing-Hossain, M. A. M., Sultana, S. 2018. Multiplex polymerase chain reaction‐restriction fragment length polymorphism assay discriminates of rabbit, rat and squirrel meat in frankfurter products. Food Control, vol. 84, p. 148-158. https://doi.org/10.1016/j.foodcont.2017.07.030

Ali, M. E., Razzak, M. A., Hamid, S, B., Rahman, M. M., Amin, M. A., Rashid, N. R. 2015. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chemistry, vol. 177, p. 214-224. https://doi.org/10.1016/j.foodchem.2014.12.098.

Al-Jowder, O., Defernez, M., Kemsley, E. K., Wilson, R. H. 1999. Mid-infrared spectroscopy and chemometrics for the authentication of meat products. J. Agric. Food Chem., vol. 47, no. 8, p. 3210-3218. https://doi.org/10.1021/jf981196d

Arahishi, F. 2005. PCR-RFLP analysis of nuclear nontranscribed spacer for mackerel species identification. Journal of Agricultural and Food Chemistry, vol. 53, p. 508-511. https://doi.org/10.1021/jf0484881

Asensio, L., González, I., Fernández, A., Céspedes, A., Rodríguez, M., A., Hernández, P., E. 2001a. Identification of Nile perch (Lates niloticus), grouper (Epinephelus guaza), and wreck fish (Polyprion americanus) fillets by PCR amplification of the 5S rDNA gene. Journal of the AOAC International, vol. 84, p. 777-781. https://doi.org/10.1093/jaoac/84.3.777

Asensio, L., Gonzalez, I., Fernandez, A., Rodriguez, M. A., Hernandez, P. E., Garcia, T., Martin, R. 2001b. PCR-SSCP: A simple method for the authentication of grouper (Epinephelus guaza), wreck fish (Polyprion americanus), and Nile perch (Lates niloticus) fillets. J. Agric. Food Chem., vol. 49, no. 4, p. 1720-1723. https://doi.org/10.1021/jf001185w

Asensio, L., González, I., Fernández, A., Rodríguez, M. A., Lobo, E., Hernández, P. E. 2002. Application of random amplified polymorphic DNA (RAPD) analysis for identification of grouper (Epinephelus guaza), wreck fish (Polyprion americanus), and Nile perch (Lates niloticus) fillets. Journal of Food Protection, vol. 65, p. 432-435. https://doi.org/10.4315/0362-028X-65.2.432

Ataman, C., Celik, U., Rehbein, H. 2006. Identification of some Aegean fish species by native isoelectric focusing. European Food Research and Technology, vol. 222, p. 99-104. https://doi.org/10.1007/s00217-005-0149-0

Ayaz, Y., Ayaz, N. D., Erol, I. 2006. Detection of species in meat and meat products using enzyme-linked immunosorbent assay. Journal of Muscle Foods, vol. 17, no. 2, p. 214-220. https://doi.org/10.1111/j.1745-4573.2006.00046.x

Azam, N. F. N., Roy, S., Lim, S. A., Ahmed, M. U. 2018. Meat species identification using DNA–luminol interaction and their slow diffusion onto the biochip surface. Food Chemistry, vol. 248, p. 29-36. https://doi.org/10.1016/j.foodchem.2017.12.046

Bardakci, F., Skibinski, D. O. F. 1994. Application of the RAPD technique in tilapia fish: species and subspecies identification. Heredity, vol. 73, p. 117-123. https://doi.org/10.1038/hdy.1994.110

Bhat, M. M., Salahuddin, M., Mantoo, I. A., Adil, S., Jalal, H., Pal, M., A. 2016. Species‐specific identification of adulteration in cooked mutton Rista (a Kashmiri Wazwan cuisine product) with beef and buffalo meat through multiplex polymerase chain reaction. Veterinary World, vol. 9, p. 226- 230. https://doi.org/10.14202/vetworld.2016.226-230

Böhme, K., Calo‐Mata, P., Barros‐Velázquez, J., Ortea, I. 2019a. Review of recent DNA‐based methods for main food‐authentication topics. Journal of Agricultural and Food Chemistry, vol. 67, p. 3854-3864. https://doi.org/10.1021/acs.jafc.8b07016

Bouzembrak, Y., Steen, B., Neslo, R., Linge, J., Mojtahed, V., Marvin, H. J. P. 2018. Development of food fraud media monitoring system based on text mining. Food Control, vol. 93, p. 283-296, https://doi.org/10.1016/j.foodcont.2018.06.003

Broadbent, J. A, Condinab, M. R., Colgrave, M. L. 2020. Quantitative mass spectrometry-based analysis of proteins related to cattle and their products – Focus on cows’ milk beta-casein proteoforms. Methods, vol. 10, https://doi.org/10.1016/j.ymeth.2020.09.011

Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., Pan, L. 2017. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLoS One, vol. 12, p. e0181949. https://doi.org/10.1371/journal.pone.0181949

Callejas, C., Ochando, M., D. 2001. Molecular identification (RAPD) of the eight species of the genus Barbus (Cyprinidae) in the Iberian Peninsula. Journal of Fish Biology, vol. 59, p. 1589-1599. https://doi.org/10.1111/j.1095-8649.2001.tb00223.x

Calvo, J. H., Osta, R., Zaragoza, P. 2002. Quantitative PCR detection of pork in raw and heated ground beef and Păte. Journal of Agriculture and Food Chemistry, vol. 50, p. 5265-5267. https://doi.org/10.1021/jf0201576

Castro-Rubio, F., Garcia, M., C., Rodriguez, R., Marina, M., L. 2005. Simple and inexpensive method for the reliable determination of additions of soybean proteins in heat processed meat products: An alternative to the AOAC official method. J. Agric. Food Chem., vol. 53, no. 2, p. 220-226. https://doi.org/10.1021/jf049557e

Cattaneo, P., Cantoni, C. 1982. On the presence of melamine in fish meals. Tecnica Molitoria, vol. 33, no. 1, p. 17-18.

Cavin, C., Cottenet, G., Cooper, K. M., Zbinden, P. 2018. Meat vulnerabilities to economic food adulteration require new analytical solutions. Chimia, vol. 72, p. 697-703. https://doi.org/10.2533/chimia.2018.697

Cawthorn, D., Steinman, H. A., Hoffman, L. C. 2013. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control, vol. 32, no. 2, p. 440-449. https://doi.org/10.1016/j.foodcont.2013.01.008

Céspedes, A., García, T., Carrera, E., González, I., Fernández, A., Hernández, P. E. 1999. Application of polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) to identification of flatfish species. Journal of the AOAC International, vol. 82, p. 903-907. https://doi.org/10.1093/jaoac/82.4.903

Céspedes, A., García, T., Carrera, E., González, I., Sanz, B., Hernández, P. E. 1998. Identification of flatfish species using polymerase chain reaction (PCR) and restriction analysis of the cytochrome b gene. Journal of Food Science, vol. 63, p. 206-209. https://doi.org/10.1111/j.1365-2621.1998.tb15710.x

Chakraborty, A., Aranishi, F., Iwatsuki, Y. 2007. Polymerase chain reaction – restriction fragment length polymorphism analysis for species identification of hairtail fish fillets from supermarkets in Japan. Fisheries Science, vol. 73, p. 197-201. https://doi.org/10.1111/j.1444-2906.2007.01319.x

Chen, X., Ran, D., Zeng, L., Xin, M. 2020. Immunoassay of cooked wild rat meat by ELISA with a highly specific antibody targeting rat heat resistant proteins. Food and Agricultural Immunology, vol. 31, p. 533-544. https://doi.org/10.1080/09540105.2020.1740180

Cho, A. R., Dong, H. J., Cho, S. 2014. Meat species identification using loop‐mediated isothermal amplification assay targeting species‐specific mitochondrial DNA. Korean Journal for Food Science of Animal Resources, vol. 34, p. 799-807. https://doi.org/10.5851/kosfa.2014.34.6.799

Chow, S., Inogue, S. 1993. Intra- and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus Tuna species. Bulletin of the National Research Institute of Far Seas Fisheries, vol. 30, p. 207-224.

Colombo, F., Cerioli, M., Colombo, M. M., Marchisio, E., Malandra, R., Renon, P. 2002. A simple polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method for the differentiation of cephalopod mollusc families Loliginidae from Ommastrephidae, to avoid substitutions in fishery field. Food Control, vol. 13, p. 185-190. https://doi.org/10.1016/S0956-7135(01)00101-3

Comesaña, A. S., Abella, P., Sanjuán, A. 2003. Identification of flatfish by PCR-RFLP. Journal of the Science of Food and Agriculture, vol. 83, p. 752-759. https://doi.org/10.1002/jsfa.1368

Comi, G., Iacumin, L., Rantsiou, K., Cantoni, C., Cocolin, L. 2005. Molecular methods for the differentiation of species used in production of cod-fish can detect commercial frauds. Food Control, vol. 16, p. 37-42. https://doi.org/10.1016/j.foodcont.2003.11.003

Costa, J., Amaral, J. S., Grazina, L., Oliveira, M., Mafra, I. 2017. Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, vol. 221, p. 1843-1850. https://doi.org/10.1016/j.foodchem.2016.10.091

Cottenet, G., Blancpain, C., Chuah, P. F., Cavin, C. 2020. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control, vol. 110, p. 107003. https://doi.org/10.1016/j.foodcont.2019.107003

Craig, A., Ritchie, A. H., Mackie, I. M. 1995. Determining the authenticity of raw reformed breaded scampi (Nephrops norvegicus) by electrophoretic techniques. Food Chem, vol. 52, no. 4, p. 451-454. https://doi.org/10.1016/0308-8146(95)93299-7

Dahle, G., Rahman, M., Eriksen, A. G. 1997. RAPD fingerprinting used for discriminating among three populations of Hilsa shad (Tenualosa ilisha). Fisheries Science, vol. 32, p. 263-269. https://doi.org/10.1016/S0165-7836(97)00058-1

Dai, Z., Qiao, J., Yang, S., Hu, S., Zuo, J., Zhu, W., Huang, C. 2015. Species authentication of common meat based on PCR analysis of the mitochondrial COI gene. Applied Biochemistry and Biotechnology, vol. 176, p. 1770-1780. https://doi.org/10.1007/s12010-015-1715-y

Deb, R., Sengar, G. S., Singh, U., Kumar, S., Alyethodi, R. R., Alex, R., Prakash, B. 2016. Application of a loop‐mediated isothermal amplification assay for rapid detection of cow components adulterated in buffalo milk/meat. Molecular Biotechnology, vol. 58, p. 850-860. https://doi.org/10.1007/s12033-016-9984-4

Di Pinto, A., Bottaro, M., Bonerba, E., Bozzo, G., Ceci, E., Marchetti, P., Tantillo, G. 2015. Occurrence of mislabeling in meat products using DNA‐based assay. Journal of Food Science and Technology, vol. 52, p. 2479-2484. https://doi.org/10.1007/s13197-014-1552-y

Dinesh, K. R. T., Lim, M., Chua, K. L., Chan, W. K., Phang, V. P. E. 1993. RAPD analysis: an efficient method of DNA fingerprinting in fishes. Zoological Science, vol. 10, p. 849 - 854.

Etienne, M., J´erˆome, M., Fleurence, J., Rehbein, H., K¨undiger, R., Mendes, R., Costa, H., Mart´ınez, I. 2001. Species identification of formed fishery products and high pressure-treated fish by electrophoresis: A collaborative study. Food Chem, vol. 72, no. 1, p. 105-112. https://doi.org/10.1016/S0308-8146(00)00205-3

EC. 2019. European Commission (EC) 30 years of keeping consumers safe: The rapid alert system for food and feed of the European union. Office for Official Publications of the European Communities, Luxembourg. 2009. Retrieved 13 March, 2019. Available at: https://ec.europa.eu/food/sites food/files/safety/docs/rasff_30_booklet_en.pdf

Fajardo, V., González, I., López-Calleja, I., Martín, I., Hernández, P. E., García, T., Mar-tín, R. 2006. PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos tau-rus), sheep (Ovis aries) and goat (Capra hircus). Journal of Agricultural and Food Chemistry, vol. 54, p. 1144-1150. https://doi.org/10.1021/jf051766r

Ferguson, A., Taggart, J. B., Prodöhl, P. A., McMeel, O., Thompson, C., Stone, C. 1995. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. Journal of Fish Biology, vol. 47, p. S103-S126. https://doi.org/10.1111/j.1095-8649.1995.tb06048.x

Fernández, A., García, T., Asensio, L., Rodríguez, M. A., González, I., Lobo, E. 2002a. Identification of the clam species Ruditapes decussatus (grooved carpet shell), Venerupis romboides (yellow carpet shell) and Venerupis pullastra (pullet carpet shell) by ELISA. Food and Agricultural Immunology, vol. 14, p. 65-71. https://doi.org/10.1080/09540100220137673

Fernández, A., García, T., Asensio, L., Rodríguez, M. A., González, I., Lobo, E. 2002b. Genetic differentiation between the clam species Ruditapes decussatus (grooved carpet shell) and Venerupis pullastra (pullet carpet shell) by PCR-SSCP analysis. Journal of the Science of Food and Agriculture, vol. 82, p. 881-885. https://doi.org/10.1002/jsfa.1117

Filonzi, L., Chiesa, S., Vaghi, M., Marzano, F. N. 2010. Molecular barcoding reveals mislabelling of commercial fish products in Italy. Food Research International, vol. 43, p. 1383-1388. https://doi.org/10.1016/j.foodres.2010.04.016

Fiorino, G. M., Garino, C., Arlorio, M., Logrieco, A. F., Losito, I., Monaci, L. 2018. 2018. Overview on untargeted methods to combat food frauds: A focus on fishery products. Journal of Food Quality, p. 1-13. https://doi.org/10.1155/2018/1581746

Fornal, E., Montowska, M. 2019. Species‐specific peptide‐based liquid chromatography‐mass spectrometry monitoring of three poultry species in processed meat products. Food Chemistry, vol. 283, p. 489-498. https://doi.org/10.1016/j.foodchem.2019.01.074

Gayo, J., Hale, S. A. 2007. Detection and quantification of species authenticity and adulteration in crabmeat using visible and near-infrared spectroscopy. J. Agric. Food Chem., vol. 55, no. 3, p. 585-592. https://doi.org/10.1021/jf061801+

Gayo, J., Hale, S. A., Blanchard, S. M. 2006. Quantitative analysis and detection of adulteration in crab meat using visible and near-infrared spectroscopy. J. Agric. Food Chem., vol. 54, no. 4, p. 1130-1136. https://doi.org/10.1021/jf051636i

Gilbert, M. T. P., Haselkorn, T., Bunce, M., Sanchez, J. J., Lucas, S. B., Jewell, L .D. 2007. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One, vol. 2, no. 6, p. e537. https://doi.org/10.1371/journal.pone.0000537

Ha, J., Kim, S., Lee, J., Lee, S., Lee, H., Choi, Y., Yoon, Y. 2017. Identification of pork adulteration in processed meat products using the developed mitochondrial DNA‐based primers. Korean Journal for Food Science of Animal Resources, vol. 37, p. 464-468. https://doi.org/10.5851/kosfa.2017.37.3.464

Hebert, P., D., Cywinska, A., Ball, S. L. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society. B‐Biological Sciences, vol. 270, p. 313-321. https://doi.org/10.1098/rspb.2002.2218

Heid C. A., Stevens, j., Livak, K. J., Williams, P. M. 1996. Real time quantitative PCR. Genome research, vol. 30, no. 9, p. 986-994. https://doi.org/10.1101/gr.6.10.986

Heydt, C., Fassunke, J., Künstlinger, H., Ihle, M. A., König, K., Heukamp, L., C. 2014. Comparison of pre-analytical FFPE sample preparation methods and their impact on massively parallel sequencing in routine diagnostics. PLoS One, vol. 9, no. 8, article e104566. https://doi.org/10.1371/journal.pone.0104566

Horstkotte, B., Rehbein, H. 2003. Fish species identification by means of restriction fragment length polymorphism and high-performance liquid chromatography. Journal of Food Science, vol. 68, p. 2658-2666. https://doi.org/10.1111/j.1365-2621.2003.tb05785.x

Hou, B., Meng, X., Zhang, L., Guo, J., Li, S., Jin, H. 2015. Development of a sensitive and specific multiplex PCR method for the simultaneous detection of chicken, duck and goose DNA in meat products. Meat Science, vol. 101, p. 90- 94. https://doi.org/10.1016/j.meatsci.2014.11.007

Hsieh, H. S., Chai, T., Hwang, D. F. 2007. Using the PCR–RFLP method to identify the species of different processed products of billfish meats. Food Control, vol. 18, p. 369-374. https://doi.org/10.1002/fsn3.322

Hsieh, Y. P., Gajewski, K. 2015. Rapid detection of bovine adipose tissue using lateral flow strip assay. Food Science & Nutrition, vol. 4, p. 588-594. https://doi.org/10.1002/fsn3.322

Hsieh, Y., H., Ofori, J., A. 2014. Detection of horse meat contamination in raw and heat‐processed meat products. Journal of Agricultural and Food Chemistry, vol. 62, p. 12536-12544. http://doi.org/10.1021/jf504032j

Hu, L. P., Zhang, H. W., Zhang, X. M., Zhang, T. T., Chang, Y. G., Zhao, X., Xue, C. H. 2018. Identification of peptide biomarkers for discrimination of shrimp species through SWATH‐MS‐based proteomics and chemometrics. Journal of Agricultural and Food Chemistry, vol. 66, p. 10567-10574. https://doi.org/10.1021/acs.jafc.8b04375

Hu, R., He, T., Zhang, Z., Yang, Y., Liu, M. 2019. Safety analysis of edible oil products via Raman spectroscopy. Talanta, vol. 191, p. 324-332. https://doi.org/10.1016/j.talanta.2018.08.074

Jiang, T. L., Cai, Q. F., Shen, J., D., Huang, M. J., Zhang, L. J., Liu, G. M., Cao, M. J. 2015. Establishment of immunological methods for the detection of soybean proteins in surimi products. LWT‐Food Science and Technology, vol. 64, p. 344-349. https://doi.org/10.1016/j.lwt.2015.06.005

Jiang, X., Fuller, D., Hsieh, Y. P., Rao, Q. 2018. Monoclonal antibody‐based ELISA for the quantification of porcine hemoglobin in meat products. Food Chemistry, vol. 250, p. 170-179. https://doi.org/10.1016/j.foodchem.2018.01.032

Jiang, X., Rao, Q., Mittl, K., Hsieh, Y. P. 2020. Monoclonal antibody‐based sandwich ELISA for the detection of mammalian meats. Food Control, vol. 110, p. 107045. https://doi.org/10.1016/j.foodcont.2019.107045

Jin, L. G., Cho, J. G., Seong, K. B., Park, J. Y., Kong, I. S., Hong, Y. K. 2006. 18 rRNA gene sequences and random amplified polymorphic DNA used in discriminating Manchurian trout from other freshwater salmonids. Fisheries Science, vol. 72, p. 903-905. https://doi.org/10.1111/j.1444-2906.2006.01234.x

Jira, W., Munch, S. 2019. A sensitive HPLC‐MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, vol. 275, p. 214-223. https://doi.org/10.1016/j.foodchem.2018.09.041

Kaltenbrunner, M., Hochegger, R., Cichna-Markl, M. 2018. Development and validation of a fallow deer (Dama dama)-specific TaqMan real-time PCR assay for the detection of food adulteration. Food Chemistry, vol. 243, p. 82-90. http://doi.org/10.1016/j.foodchem.2017.09.087

Kang, T. S., Tanaka, T. 2018. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products. Food Chemistry, vol. 269, p. 549-558. https://doi.org/10.1016/j.foodchem.2018.06.141

Kim, J., Kwon, I. J., Kim, M., Chang, J. Y., Shim, W. 2017. Production and preliminary characterization of monoclonal antibodies highly specific to pork fat protein. Food Control, vol. 79, p. 80-86. https://doi.org/10.1016/j.foodcont.2017.03.022

Kitaoka, M., Okamura, N., Ichinose, H., Goto, M. 2008. Detection of SNPs in fish DNA: Application of the fluorogenic ribonuclease protection (FRIP) assay for the authentication of food contents. J. Agric. Food Chem., vol. 56, no. 15, p. 6246-6251. https://doi.org/10.1021/jf800300k

Knuutinen, J., Harjula, P. 1998. Identification of fish species by reverse-phase high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography B, vol. 705, p. 11-21. https://doi.org/10.1016/S0378-4347(97)00505-7

Kumar, A., Kumar, R. R., Sharma, B. D., Gokulakrishnan, P., Mendiratta, S. K., Sharma, D. 2015. Identification of species origin of meat and meat products on the DNA basis: A review. Critical Reviews in Food Science and Nutrition, vol. 55, p. 1340-1351. https://doi.org/10.1080/10408398.2012.693978

Kuswandi, B., Gani, A. A., Ahmad, M. 2017. Immuno strip test for detection of pork adulteration in cooked meatballs. Food Bioscience, vol. 19, p. 1-6. https://doi.org/10.1016/j.fbio.2017.05.001

Lee, S. Y., Kim, M. J., Hong, Y., Kim, H. Y. 2016. Development of a rapid on‐site detection method for pork in processed meat products using real‐time loop‐mediated isothermal amplification. Food Control, vol. 66, p. 53-61. https://doi.org/10.1016/j.foodcont.2016.01.041

Li, H., Bai, R., Zhao, Z., Tao, L., Ma, M., Ji, Z., Liu, A. 2018a. Application of droplet digital PCR to detect the pathogens of infectious diseases. Bioscience Reports, vol. 38, p. 1170. https://doi.org/10.1042/BSR20181170

Li, Y., Zhang, Y., Li, H., Zhao, W., Guo, W., Wang, S. 2018b. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC‐MS/MS method. Food Chemistry, vol. 245, p. 125-131. https://doi.org/10.1016/j.foodchem.2017.09.066

Li, T. T., Jalbani, Y. M., Zhang, G. L., Zhao, Z., Y., Wang, Z. Y., Zhao, X. Y., Chen, A. L. 2019. Detection of goat meat adulteration by real‐time PCR based on a reference primer. Food Chemistry, vol. 277, p. 554-557. https://doi.org/10.1016/j.foodchem.2018.11.009

Lim, S. A., Ahmed, M. U. 2016. A label free electrochemical immunosensor for sensitive detection of porcine serum albumin as a marker for pork adulteration in raw meat. Food Chemistry, vol. 206, p. 197-203. https://doi.org/10.1016/j.foodchem.2016.03.063

Lin, W. F., Hwang, D. F. 2007. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control, vol. 18, p. 1050-1057. https://doi.org/10.1016/j.foodcont.2006.07.001

Lockley, A. K., Bardsley, R. G. 2000. DNA‐based methods for food authentication. Trends Food Sci. Technol., vol. 11, p. 67-77. https://doi.org/10.1016/S0924-2244(00)00049-2

Mackie, I., Craig, A., Etienne, M., Jerome, M., Fleurence, J., Jessen, F. 2000. Species identification of smoked and gravid fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing: a collaborative study. Food Chemistry, vol. 71, p. 1-7. https://doi.org/10.1016/S0308-8146(00)00147-3

Magiati, M., Myridaki, V. M., Christopoulos, T. K., Kalogianni, D. P. 2019. Lateral flow test for meat authentication with visual detection. Food Chemistry, vol. 274, p. 803-807. https://doi.org/10.1016/j.foodchem.2018.09.063

Mandli, J., El Fatimi, I., Seddaoui, N., Amine, A. 2018. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat. Food Chemistry, vol. 255, p. 380-389. https://doi.org/10.1016/j.foodchem.2018.01.184

Martínez, I., Malmheden, I., Yman, S. 1998. Species identification in meat products by RAPD analysis. Food Research International, vol. 31, p. 459-466. https://doi.org/10.1016/S0963-9969(99)00013-7

Masiri, J., Benoit, L., Barrios‐Lopez, B., Thienes, C., Meshgi, M., Agapov, A., Samadpour, M. 2016. Development and validation of a rapid test system for detection of pork meat and collagen residues. Meat Science, vol. 121, p. 397-402. https://doi.org/10.1016/j.meatsci.2016.07.006

Masiri, J., Benoit, L., Thienes, C., Kainrath, C., Barrios‐Lopez, B., Agapov, A., Samadpour, M. 2017. A rapid, semi‐quantitative test for detection of raw and cooked horse meat residues. Food Control, vol. 76, p. 102-107. https://doi.org/10.1016/j.foodcont.2017.01.015

Meyer, R., Höfelein, C., Lüthy, J., Candrian, U. 1995. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. Journal of the AOAC International, vol. 78, p. 1542-1551. https://doi.org/10.1093/jaoac/78.6.1542

Miya, M., Kawaguchi, A., Nishida, M. 2001. Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Molecular Biology and Evolution, vol. 18, p. 1993-2009. https://doi.org/10.1093/oxfordjournals.molbev.a003741

Montowska, M., Spychaj, A. 2018. Quantification of species‐specific meat proteins in cooked and smoked sausages using infusion mass spectrometry. Journal of Food Science and Technology, vol. 55, p. 49849-4993. https://doi.org/10.1007/s13197-018-3437-y

Moore, J. C., Spink, J., Lipp, M. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of Food Science, vol. 77, p. 118-126. https://doi.org/10.1111/j.1750-3841.2012.02657.x

Mousavi, S., M., Jahed Khaniki, G., Eskandari, Rabiei, M. Mirab Samiee, S., Mehdizadeh, M. 2015. Applicability of species-specific polymerase chain reaction for fraud identification in raw ground meat commercially sold in Iran. Journal of Food Composition and Analysis, vol. 40, p. 47-51. https://doi.org/10.1016/j.jfca.2014.12.009

Naveena, B. M., Jagadeesh, D. S., Babu, A. J., Rao, T. M., Kamuni, V., Vaithiyanathan, S., Rapole, S. 2017. OFFGEL electrophoresis and tandem mass spectrometry approach compared with DNA‐based PCR method for authentication of meat species from raw and cooked ground meat mixtures containing cattle meat, water buffalo meat and sheep meat. Food Chemistry, vol. 233, p. 311-320. https://doi.org/10.1016/j.foodchem.2017.04.116

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T. 2000. Loop-mediated isothermal amplification of DNA, Nucleic Acids Research, vol. 28, no. 12, p. e63. https://doi.org/10.1093/nar/28.12.e63

Ochiai, Y., Ochiai, L., Hashimoto, K., Watabe, S. 2001. Quantitative estimation of dark muscle content in the mackerel meat paste and its products using antisera against myosin light chains. Journal of Food Science, vol. 66, p. 1301-1305. https://doi.org/10.1111/j.1365-2621.2001.tb15205.x

Ofori, J., A., Hsieh, Y., H. 2015. Characterization of a 60‐kDa thermally stable antigenic protein as a marker for the immunodetection of bovine plasma‐derived food ingredients. Journal of Food Science, vol. 80, p. c1654-c1660. https://doi.org/10.1111/1750-3841.12963

Orduna, A., R., Husby, E., Yang, C., T., Ghosh, D., Beaudry, F. 2017. Detection of meat species adulteration using high‐resolution mass spectrometry and a proteogenomics strategy. Food Additives & Contaminants: Part A, vol. 34, no. 7, p. 1110-1120. https://doi.org/10.1080/19440049.2017.1329951

Pardo, M., A., Pérez-Villarea, B. 2004. Identification of commercial canned tuna species by restriction site analysis of mitochondrial DNA products obtained by nested primer PCR. Food Chemistry, vol. 86, p. 143-150. https://doi.org/10.1016/j.foodchem.2003.09.024

Park, B. S., Oh, Y. K., Kim, M. J., Shim, W. B. 2015. Skeletal muscle troponin I (TnI) in animal fat tissues to be used as biomarker for the identification of fat adulteration. Korean Journal for Food Science of Animal Resources, vol. 34, p. 822-828. https://doi.org/10.5851/kosfa.2014.34.6.822

Partis, L., Croan, D., Guo, Z, Clark, R., Coldham, T., Murby, J. 2000. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Science, vol. 54, p. 369-376. https://doi.org/10.1016/S0309-1740(99)00112-6

Partis, L., Wells, R. J. 1996. Identification of fish species using random amplified polymorphic DNA (RAPD). Molecular and Cellular Probes, vol. 10, p. 435-441. https://doi.org/10.1006/mcpr.1996.0060

Pascoal, A., Barros-Vel´azquez, J., Cepeda, A., Gallardo, J., M., Calo-Mata, P. 2008. Survey of the authenticity of prawn and shrimp species in commercial food products by PCR-RFLP analysis of a 16S rRNA/tRNAVal mitochondrial region. Food Chem, vol. 109, no. 3, p. 638-646. https://doi.org/10.1016/j.foodchem.2007.12.079

Petrášová, M., Pospiech, M., Tremlová, B., Tauferová, A., Marcinčák, S. 2017. Comparison of immunofluorescence method with histochemical and ELISA methods focusing on wheat protein detection in meat products. Food and Agricultural Immunology, vol. 28, p. 1094-1104. https://doi.org/10.1080/09540105.2017.1328661

Pohl, G., Shih Ie, M. 2004. Principle and applications of digital PCR. Expert Review of Molecular Diagnostics, vol. 4, p. 41-47. https://doi.org/10.1586/14737159.4.1.41

Prandi, B., Lambertini, F., Faccini, A., Suman, M., Leporati, A., Tedeschi, T., Sforza, S. 2017. Mass spectrometry quantification of beef and pork meat in highly processed food: Application on Bolognese sauce. Food Control, vol. 74, p. 61-69. https://doi.org/10.1016/j.foodcont.2016.11.032

Primrose, S., Woolfe, M., Rollinson, S. 2010. Food forensics: Methods for determining the authenticity of foodstuffs. Trends in Food Science & Technology, vol. 21, no. 12, p. 582-590. https://doi.org/10.1016/j.tifs.2010.09.006

Ram, J. L., Ram, M. L., Baidoun, F. F. 1996. Authentication of canned tuna and bonito by sequence and restriction site analysis of polymerase chain reaction products of mitochondrial DNA. J. Agric. Food Chem., vol. 44, no. 8, p. 2460-2467. https://doi.org/10.1021/jf950822t

Ran, G., Ren, L., Han, X., Liu, X., Li, Z., Pang, D., Tang, X. 2016. Development of a rapid method for the visible detection of pork DNA in halal products by loop‐mediated isothermal amplification. Food Analytical Methods, vol. 9, p. 565-570. https://doi.org/10.1007/s12161-015-0246-z

Rashid, N. R., Ali, M. E., Hamid, S. B., Rahman, M. M., Razzak, M. A., Asing, Amin, M. A. 2015. A suitable method for the detection of a potential fraud of bringing macaque monkey meat into the food chain. Food Additives and Contaminants. Part A, vol. 32, p. 1013-1022. https://doi.org/10.1080/19440049.2015.1039073

Rehbein, H., Kress, G., Schmidt, T. 1997. Application of PCR-SSCP to species identification of fishery products. Journal of Science of Food and Agriculture, vol. 74, p. 35-41. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1<35::AID-JSFA765>3.0.CO;2-2

Rehbein, H., Mackie, I., M., Pryde, S., Gonzales-Sotelo, C., Medina, I., Pérez-Martín, R. 1999. Fish species identification in canned tuna by PCR-SSCP: validation by a collaborative study and investigation of intra-species variability of the DNA-patterns. Food Chemistry, vol. 64, p. 263-268. https://doi.org/10.1016/S0308-8146(98)00125-3

Rehbein, H., Sotelo, C., G., Pérez-Martín, R., I., Chapela-Garrido, M. J., Hold, G. L., Russell, V., J. 2002. Differentiation of raw or processed eel by PCR-based techniques: restriction fragment length polymorphism analysis (RFLP) and single strand conformation polymorphism analysis (SSCP). European Food Research and Technology, vol. 214, p. 171-177. https://doi.org/10.1007/s00217-001-0457-y

Rhodes, C. N., Lofthouse, J. H., Hird, S., Rose, P., Reece, P., Christy, J., Macarthur, R., Brereton, P.A. 2010. The use of stable carbon isotopes to authenticate claims that poultry have been corn-fed. Food Chem, vol. 118, no. 4, p. 927-932. https://doi.org/10.1016/j.foodchem.2008.05.113

Ruiz-Valdepenas Montiel, V., Gutierrez, M. L., Torrente-Rodriguez, R. M., Povedano, E., Vargas, E., Reviejo, A. J., Pingarron, J., M. 2017. Disposable amperometric polymerase chain reactionfree biosensor for direct detection of adulteration with horsemeat in raw lysates targeting mitochondrial DNA. Analytical Chemistry, vol. 89, p. 9474-9482. https://doi.org/10.1021/acs.analchem.7b02412

Şakalar, E., Abasiyanik, M., F., Bektik, E., Tayyrov, A. 2012. Effect of heat processing on DNA quantification of meat species. Journal of Food Science, vol. 77, no. 9, p. N40-N44. https://doi.org/10.1111/j.1750-3841.2012.02853.x

Seddaoui, N., Amine, A. 2020. A sensitive colorimetric immunoassay based on poly(dopamine) modified magnetic nanoparticles for meat authentication. LWT‐Food Science and Technology, vol. 122, p. 109045. https://doi.org/10.1016/j.lwt.2020.109045

Song, K. Y., Hwang, H. J., Kim, J. H. 2017. Ultra‐fast DNA‐based multiplex convection PCR method for meat species identification with possible on‐site applications. Food Chemistry, vol. 229, p. 341-346. https://doi.org/10.1016/j.foodchem.2017.02.085

Spink, J., Moyer, D., C. 2011. Defining the public health threat of food fraud. Journal Of Food Science, vol. 76, no. 9, p. 163. https://doi.org/10.1111/j.1750-3841.2011.02417.x

Stader, C., Judas, M., Jira, W. 2019. A rapid UHPLC‐MS/MS screening method for the detection of the addition of porcine blood plasma to emulsion‐type pork sausages. Analytical and Bioanalytical Chemistry, vol. 411, p. 6697-6709. https://doi.org/10.1007/s00216-019-02043-2

Sul, S., Kim, M. J., Kim, H. Y. 2019. Development of a direct loop‐mediated isothermal amplification (LAMP) assay for rapid and simple on‐site detection of chicken in processed meat products. Food Control, vol. 98, p. 194-199. https://doi.org/10.1016/j.foodcont.2018.11.025

Takagi, M., Taniguchi, N. 1995. Random amplified polymorphic DNA (RAPD) for identification of three species of Anguilla, A. japonica, A. australis and A. bicolor. Fisheries Science, vol. 61, p. 884-885. https://doi.org/10.2331/fishsci.61.884

Thienes, C. P., Masiri, J., Benoit, L., A., Barrios‐Lopez, B., Samuel, S. A., Cox, D. P., Samadpour, M. 2018. Quantitative detection of pork contamination in cooked meat products by ELISA. Journal of AOAC International, vol. 101, p. 810-816. https://doi.org/10.5740/jaoacint.17-0036

Thienes, C. P., Masiri, J., Benoit, L., A., Barrios‐Lopez, B., Samuel, S., A., Krebs, R., A., Samadpour, M. 2019. Quantitative detection of beef contamination in cooked meat products by ELISA. Journal of AOAC International, vol. 102, p. 898-902. https://doi.org/10.5740/jaoacint.18-0193

Tittlemier, S. A. 2010. Methods for the analysis of melamine and related compounds in foods: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., vol. 27, no. 2, p. 129-145. https://doi.org/10.1080/19440040903289720

van Ruth, S., M., Huisman, W., Luning, P., A. 2017. Food fraud vulnerability and its key factors. Trends In Food Science & Technology, vol 67, p. 70-75. https://doi.org/10.1016/j.tifs.2017.06.017

Vanha, J., Hinkova, A., Slukova, M., Kvasnicka, F. 2009. Detection of plant raw materials in meat products by HPLC. Czech J Food Sci, vol. 27, no. 4, p. 234-239. https://doi.org/10.17221/205/2008-CJFS

von Bargen, C., Brockmeyer, J., Humpf, H. 2014. Meat authentication: A new HPLC − MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. Journal of Agricultural and Food Chemistry, vol. 62, p. 9428-9435. https://doi.org/10.1021/jf503468t

Wang, J. Y., Wan, Y. P., Chen, G. Y., Liang, H. X., Ding, S., Shang, K., Tang, Z. 2019a. Colorimetric detection of horse meat based on loop‐mediated isothermal amplification (LAMP). Food Analytical Methods, vol. 12, p. 2535-2541. https://doi.org/10.1007/s12161-019-01590-9

Wang, Q., Zou, L.., Yang, X., Liu, X.., Nie, W., Zheng, Y., Wang, K. 2019b. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosensors and Bioelectronics, vol., 135, p. 129-136. https://doi.org/10.1016/j.bios.2019.04.013

Weder, J., K., Rehbein, H., Kaiser, K., P. 2004. On the specificity of tuna-directed primers in PCR-SSCP analysis of fish and meat. European Food Research and Technology, vol. 213, p. 139-144. https://doi.org/10.1007/s002170100339

Williams, J. G. K., Kubelik, A. R., Livak, K. J, Rafalski, J., Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, vol. 18, p. 6531-6535. https://doi.org/10.1093/nar/18.22.6531

Xiang, W., Shang, Y., Wang, Q., Xu, Y., Zhu, P., Huang, K., Xu, W. 2017. Identification of a chicken (Gallus gallus) endogenous reference gene (Actb) and its application in meat adulteration. Food Chemistry, vol. 234, p. 472-478. https://doi.org/10.1016/j.foodchem.2017.05.038

Xu, R., Wei, S., Zhou, G., Ren, J., Liu, Z., Tang, S., Wu, X. 2018. Multiplex TaqMan locked nucleic acid real-time PCR for the differential identification of various meat and meat products. Meat Science, vol. 137, p. 41-46. https://doi.org/10.1016/j.meatsci.2017.11.003

Xu, Y., Xiang, W., Wang, Q., Cheng, N., Zhang, L., Huang, K., Xu, W. 2017. A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site. Scientific Reports, vol. 7, p. 43453. https://doi.org/10.1038/srep43453

Yamazaki, Y., Shimada, N., Tago, Y. 2005. Detection of hybrids between masu salmon Oncorhynchus masou masou and amago salmon O. m. ishikawae occurred in the Jinzu River using a random amplified polymorphic DNA technique. Fisheries Science, vol. 71, p. 320-326. https://doi.org/10.1111/j.1444-2906.2005.00967.x

Yang, C. T., Ghosh, D., Beaudry, F. 2018. Detection of gelatin adulteration using bio‐informatics, proteomics and high‐resolution mass spectrometry. Food Additives & Contaminants: Part A, vol. 35, p. 599-608. https://doi.org/10.1080/19440049.2017.1416680

Zhang, W. J., Cui, S. H., Cheng, X. L., Wei, F., Ma, S. C. 2019. An optimized TaqMan real‐time PCR method for authentication of ASINI CORII COLLA (donkey‐hide gelatin). Journal of Pharmaceutical and Biomedical Analysis, vol. 170, p. 196-203. https://doi.org/10.1016/j.jpba.2019.03.028

Zhang, X., Lowe, S. B., Gooding, J. J. 2014. Brief review of monitoring methods for loop‐mediated isothermal amplification (LAMP). Biosensors & Bioelectronics, vol. 61. p. 491-499. https://doi.org/10.1016/j.bios.2014.05.039

Zvereva, E. A., Kovalev, L. I., Ivanov, A. V., Kovaleva, M. A., Zherdev, A. V., Shishkin, S. S., Dzantiev, B. B. 2015. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, vol. 105, p. 46-52. https://doi.org/10.1016/j.meatsci.2015.03.001

Published

2020-10-28

How to Cite

Čapla, J., Zajác, P., Čurlej, J., Belej, Ľubomír, Kročko, M., Bobko, M., Benešová, L., Jakabová, S., & Vlčko, T. (2020). Procedures for the identification and detection of adulteration of fish and meat products . Potravinarstvo Slovak Journal of Food Sciences, 14, 978–994. https://doi.org/10.5219/1474

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>