The study on the process of dehydrating legumes during high-temperature micronization with infrared rays


  • Otari Sesikashvili Akaki Tsereteli State University, Faculty of Engineering - Technical, Depar¬tment of Mechanical engineering, Tamar - Mepe str. 59, 4600 Kutaisi, Georgia, Tel: +995 593 96 62 42
  • Nodari Mardaleishvili Akaki Tsereteli State University, Faculty of Engineering-Technical, Department of Mechanical engineering, Tamar - Mepe str. 59, 4600 Kutaisi, Georgia, Tel: +995 558 368022
  • Elene Gamkrelidze Akaki Tsereteli State University, Faculty of Engineering-Technological, Depar¬tment of Chemical technology and Ecology, Tamar - Mepe str. 59, 4600 Kutaisi, Georgia, Tel: +995 593352781
  • Shalva Tsagareishvili LTD ,,Kutaisi 2021“, Manager. Nikea str. 1 Lane, 4, 4600 Kutaisi, Georgia, Tel: +995 596 44 44 50



IR radiation, heat treatment, bean, legume grain, dehydration, moisture content


Heat treatment is a common operation in grain processing technology. Thermal action on grain is characterized by temperature level and duration. Also, the grain changes all its complex properties. Frequently, the temperature in grain activates the process of change in the moisture content and is accompanied by moisture loss. The processes of change in the heat and moisture are interrelated. Based on the experiments conducted on legumes (different varieties of bean, white lupin), a mathematical model of these processes has been developed and the appropriate non-linear differential equations have been used. The obtained equations cannot be solved either analytically or numerically, because some of the coefficients are unknown. The equations are solved based on certain assumptions. Based on these assumptions, the paper provides the calculation of the change in temperature and moisture content over time in legumes, such as bean and white lupin. The obtained results have been compared with experimental data.


Download data is not yet available.


Arntfield, S. D., Scanlon, M., Malcolmson, L., Watts, B. M., Ryland, D., Savoie, V. 1997. Effect of tempering and end moisture content on the quality of micronized lentils. Food Research International, vol. 30, no. 5, p. 371-380.

Campos-Vega, R., Bassinello, P. Z., de Andrade Cardoso Santiago, R., Oomah, B. D. 2018. Dry Beans: Processing and Nutritional Effects. In Grumezescu, A. M., Holban, A. M. Therapeutic, Probiotic and Unconventional Foods. Massachusetts, USA : Academic Press, p. 367-386. ISBN 978-0-12-814625-5.

Deepa, C., Hebbar, H. U. 2016. Effect of High-Temperature Short-Time ‘Micronization’ of Grains on Product Quality and Cooking Characteristics. Food Engineering Reviews, vol. 8, p. 201-213.

Deepa, C., Hebbar, H. U. 2017. Effect of micronization of maize grains on shelf‐life of flour. Food processing and preservation, vol 41, no. 5, p. 13-19

Erdoğdu, B. S., Ekiz, I. H., Erdoğdu, F., Atungulu, G. G., Pan, Z. 2011. Industrial applications of infrared radiation heating and economic benefits in food and agricultural processing. In Pan, Z., Atungulu, G. G. Infrared Heating for Food and Agricultural Processing, Food Science and Technology. Florida, USA : CRC Press, p. 237-274. ISBN 9780429150876.

Frohlich, P., Young, G., Bourré, L., Borsuk, Y., Sarkar, A., Sopiwnyk, E., Pickard, M., Dyck, A., Malcolmson, L. 2019. Effect of premilling treatments on the functional and bread‐baking properties of whole yellow pea flour using micronization and pregermination. Cereal Chemistry, Cereals and grains association, vol. 96, no. 5, p. 895-907.

GOST 13586.5. 2015. Grain. Method of moisture content determination.

Heydari, M. M., Kauldhar, B. S., Meda, V. 2020. Kinetics of a thin‐layer microwave‐assisted infrared drying of lentil seeds. Legume science, vol. 2, no. 2, p. 1-9.

ISO 3166. 2015. Codes for the representation of names of countries and their subdivisions - Part 1: Country codes.

Kayitesi, E., Duodu, K., Minnaar, A., de Kock, H. D. 2013. Effect of micronisation of pre-conditioned cowpeas on cooking time and sensory properties of cooked cowpeas. Journal of the science of food and agriculture, vol. 93, no. 4, p. 838-845.

Kozin, E. V. 2011. Termychesky aktiviruemie processi pri visokotemperaturnoi mikronizacii soevykh bobov, perlovoi krupi I prosa (Thermally activated processes during high-temperature micronization of soybeans and pearl barley and millet) : disertation theses. Moscow, p. 25. (in Russian)

Kulaychev, A. 1999. The complete works in three volumes, vol. 1. In Kulaychev, A. et al. Metodi I sredstva analiza dannikh v srede Windows STADIA-6 (Methods and tools of data analysis in a Windows environment STADIA-6). Information and computers, 344 p. ISBN 5-89-357-016-2. (in Russian)

Lee, E.-H. 2020. A Review on Applications of Infrared Heating for Food Processing in Comparison to Other Industries. In Knoerzer, K., Muthukumarappan, K. Innovative Food Processing Technologies. Amsterdam, Netherlands : Elsevier, 2480 p. ISBN 978-0-12-815782-4.

Lykov, A. V., Mikhailov, Y. A. 1972. Theory of heat and mass-transfer. University of Michigan, USA : Israel Program for Scientific Translations publishers, 558 p.

Makarov, E. 2011. Enzhinernie raschoty v Mathcad 15 (Engineering Calculations in Mathcad 15). Moskow-St. Petersburg, Piter, 404 p. ISBN 978-5-459-00357-4. (in Russian)

Niu, Z. Y., Classen, H. L., Scott, T. A. 2003. Effects of micronization, temperin and flaking on the chemical characteristics of wheat and its feeding value for broiler chicks. Сanadian Journal of Animal Science, vol 83, p. 113-121.

Ogundele, O. M., Kayitesi, E. 2019. Influence of infrared heating processing technology on the cook-ing characteristics and functionality of African legumes. Journal of Food Science and Technology, vol. 56, p. 1669-1682.

Pan, Z., Atungalu, G. G. 2010. Infrared Heating for Food and Agricultural processing. Boca Raton, Florida, US : CRC Press. 300 p. ISBN-13 9781420090970.

Pan, Z., Li, X. 2014. Infrared Heating. In Sun, D-W. Emerging Technologies for Food Processing. 2nd ed. Massachusetts, USA : Academic Press, 666 p. ISBN 9780124104815.

Pan, Z., Venkitasamy, C., Li, X. 2016. Infrared Processing of Foods. In Jayabalan, R., Malbaša, R., Sathishkumar, M. Reference Module in Food Science. Amsterdam, Netherlands : Elsevier, p. 1-12. ISBN 978-0-08-100596-5.

Perez-Maldonado, A. P. F. M., Farell, D. J. 2002. Effects of heat treatment on the inhibitor activity. British Poultry Science, vol .44, no. 2, р. 299-308.

Rogov, Y. A., Nekrutman, S. V. 1986. Ultravisokochastotniy nagrev pishi (Ultra high frequency heating of food). Moskow, Russia : Agropromizdat Publishers, 286 p. (in Russian)

Sakare, P., Prasad, N., Thombare, N. Singh, R., Sharma, S. C. 2020. Infrared Drying of Food Materials: Recent Advances. Food Engineering Reviews, vol. 12, no. 3, p. 381-398.

Semwal, J., Meera, M. S. 2020. Infrared radiation: Impact on physicochemical and functional charac-teristics of grain starch. Starch: Biosinthesis, Nutrition, Biomedical, vol. 9, no. 1, p. 16-22.

Shershunov, V. A., Cherviakov, A. V., Kurzenkov, C. V. 2004. Sostoianie i perspektivi ispolzovania novikh resursosberegaiushikh tekhnologii v proizvodstve kormov dlia zhivotnikh (State and prospects for the use of new resource-saving technologies in the production of animal feed). Moskow, Russia : Nine print publishers, p. 136. ISBN 9781627796378. (in Russian)

Shulaev, G., Betin, A. 2010. Mikronizirovannaia soya dlia molodikh svinei (Micronized soybeans in young pig feed). Kombikorma, vol. 2, p. 76-80. (in Russian)

Shurchkova, Y. A., Ganzenko, V. V., Radchenko, N. L. 2007. Ekstruzionnie protsessi soevikh bobov (Extrusion processing of soybean grain). Storage and processing of grain, vol. 9, no. 99, p. 51-53. (in Russian)

Tuśnio, A., Barszcz, M., Święch, E., Skomiał, J., Taciak, M. 2020. Large intestine morphology and microflora activity in piglets fed diets with two levels of raw or micronized blue sweet lupin seeds. Livestock Science, vol. 240, p. 104137.

Vaidyanathan, J. S., Krishnamurthy, K. 2020. Infrared heating for Decontamination. In Knoerzer, K., Muthukumarappan, K. Innovative Food Processing Technologies. Amsterdam, Netherlands : Elsevier, p. 501-506. ISBN 978-0-12-815782-4.

Zverev, S. V. 2009. Visokotemperaturnaia mikronizacia v proizvodstve zernoproduktov (High-temperature micronzation in production of cereal products). Moskow, Russia : Deli Print publishers, 222 p. ISBN 978-5-94343-202-6. (in Russian)

Zverev, S., Sesikashvili, O. 2016. Pervichnaia pererabotka zeren belogo lupina (Primary processing of grain white lupine). Kutaisi, Georgia : ATSU, 82 p. ISBN 978-9941-417-96-2. (in Russian)

Zverev, S., Sesikashvili, O. 2018. Heating and dehydration of grain and cereals at a combined energy supply. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, 2018, no. 1, p. 79-90.

Zverev, S., Sesikashvili, O. 2018. Modeling of urease thermal inactivation processes in soybean at high-temperature micronization. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 512-519.

Zverev, S., Sesikashvili, O., Bulakh, Y. 2017. Soya. Pererabotka i primenenie (Soy. Processing and application). EU : Lambert Academic Publishing, 153 p. ISBN 978-613-8-18491-1. (in Russian)

Zverev, S. V., Kozin, E. V. 2008. Inaktivatsia ureazi vo vremia HTM soy (Inactivation of urease during HTM soy). Storage and processing of agricultural raw materials, vol. 4, p. 165-169. (in Russian)

Zverev, S. V., Zvereva, N. S. 2006. Funktsionalnie zernovie produkty (Functional grain products). Moskow, Russia : Deli Print publishers, 118 p. ISBN 5-94343-106-3. (in Russian)

Žilić, S., Šukalović, V., Milašinović-Šeremešić, M., Ignjatovic-Micic, D., Maksimovic, M., Nikolić, V. 2009. Effect of Micronisation on the Composition and Properties of the Flour from White, Yellow and Red Maize. Food Technol. Biotechnol., vol. 48, no. 2, p. 198-206.



How to Cite

Sesikashvili, O., Mardaleishvili, N., Gamkrelidze, E., & Tsagareishvili, S. (2021). The study on the process of dehydrating legumes during high-temperature micronization with infrared rays. Potravinarstvo Slovak Journal of Food Sciences, 15, 162–172.

Most read articles by the same author(s)