Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats

Authors

  • Hana Chovancová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Radoslav Omelka Constantine the Philosopher University, Faculty of Natural Sciences, Department of Botany and Genetics, 949 74 Nitra
  • Ivana Boboňová Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra
  • Grzegorz Formicki Krakow Pedagogical University, Institute of Biology, Department of Zoology, Krakow 31 054
  • Róbert Toman Slovak University of Agriculture, Faculty of Agrobiology and Food Resources, Department of Veterinary Sciences, 949 76 Nitra
  • Monika Martiniaková Constantine the Philosopher University, Faculty of Natural Sciences, Department of Zoology and Anthropology, 949 74 Nitra

DOI:

https://doi.org/10.5219/343

Keywords:

bone, osteotoxicology, cadmium, diazinon, rats

Abstract

Food contamination from natural or anthropogenic sources poses severe risks to health of human and animals. Bone is a metabolically active organ, which can be affected by various toxic substances, such as cadmium (Cd) and diazinon (DZN), leading to disruption in bone metabolic processes. The present study was designed to investigate the effect of simultaneous peroral administration to Cd and DZN on femoral compact bone structure in adult male rats. A total of twenty 1-month-old male Wistar rats were randomized into two experimental groups. In the first group (EG), young males were dosed with a combination of 30 mg CdCl2/L and 40 mg DZN/L in drinking water, for 90 days. Ten 1-month-old males without Cd-DZN intoxication served as a control group (CG). After 90 days of daily peroral exposure, evaluations of femoral bone
macro- and micro-structure were performed in each group. We found no significant differences in body weight, femoral weight, femoral length and cortical bone thickness between both groups (EG and CG). However, rats from the group EG displayed different microstructure in the middle part of the substantia compacta where primary vascular radial bone tissue appeared. In some cases, vascular expansion was so enormous that canals were also present near the periost. On the other hand, they occurred only near endosteal surfaces in rats from the control group. Moreover, a smaller number of primary and secondary osteons was identified in Cd-DZN-exposed rats. This fact signalizes reduced mechanical properties of their bones. Anyway, our results suggest an adaptive response of compact bone tissue to Cd-DZN-induced toxicity in adult male rats in order to prevent osteonecrosis.

Downloads

Download data is not yet available.

References

Arbon, K. S., Christensen, C. M., Harvey, W. A., Heggland, S. J. 2012. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells. Food Chem. Toxicol., vol. 50, p. 198-205. https://doi.org/10.1016/j.fct.2011.10.031 PMid:22019892

Bernard, A. 2008. Cadmium & its adverse effects on human health. Indian J. Med. Res., vol. 128, p. 557-564. PMid:19106447

Brama, M., Politi, L., Santini, P., Migliaccio, S., Scandurra, R. 2012. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways. J. Endocrinol. Invest., vol. 35, no. 2, p. 198-208. https://doi.org/10.3275/7801 PMid:21697648

Brzóska, M. M., Moniuszko-Jakoniuk, J. 2005a. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol., vol. 202, no. 1, p. 68-83. https://doi.org/10.1016/j.taap.2004.06.007 PMid:15589978

Brzóska, M. M., Moniuszko-Jakoniuk, J. 2005b. Bone metabolism of male rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol., vol. 207, no. 3, p. 195-211. https://doi.org/10.1016/j.taap.2005.01.003 PMid:16129113

Brzóska, M. M., Rogalska, J., Galazyn-Sidorczuk, M., Jurczuk, M., Roszczenko, A., Kulikowska-Karpińska, E., Moniuszko-Jakoniuk, J. 2007. Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology, vol. 237, no. 1-3, p. 89-103. https://doi.org/10.1016/j.tox.2007.05.001 PMid:17560002

Brzóska, M. M., Galazyn-Sidorczuk, M., Rogalska, J., Roszczenko, A., Jurczuk, M., Majewska, K., Moniuszko-Jakoniuk, J. 2008. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chem-Biol. Interact., vol. 171, no. 3, p. 312-324. https://doi.org/10.1016/j.cbi.2007.11.007 PMid:18164699

Brzóska, M. M., Majewska, K., Kupraszewicz, E. 2010. Effects of low, moderate and relatively high chronic exposure to cadmium on long bones susceptibility to fractures in male rats. Environ. Toxicol. Pharmacol., vol. 29, no. 3, p. 235-245. https://doi.org/10.1016/j.etap.2010.01.005 PMid:21787608

Cabaj, M. 2012. The effect of diazinon and selenium on structure and function of testes and epididymis in rats (in Slovak): dissertation thesis. Nitra: SAU, 180 p.

Carageorgiou, H., Tzotzes, V., Pantos, C., Mourouzis, C., Zarros, A., Tsakiris, S. 2004. In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin. Pharmacol. Toxicol., vol. 94, no. 3, p. 112-118. PMid:15049340

Chen, X., Zhu, G., Gu, S., Jin, T., Shao, C. 2009. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ. Toxicol. Pharmacol., vol. 28, p. 232-236. https://doi.org/10.1016/j.etap.2009.04.010 PMid:21784008

Cho, J., Lee, C. 1990. Effects of diazinon on the anatomical and embryological changes in the developing chick embryo. Res. Rep. RDA(V), vol. 32, p. 35-47.

Cho, J., Lee, C. 1991. Studies on diazinon induced inhibition of skeletal mineralization in chick embryo. Res. Rep. RDA(V), vol. 33, p. 41-60.

Comelekoglu, U., Yalin, S., Bagis, S., Ogenler, O., Sahin, N. O., Yildiz, A., Coskun, B., Hatungil, R., Turac, A. 2007. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone: mechanical, biochemical, and histopathological evaluation. Ecotox. Environ. Safe., vol. 66, no. 2, p. 267-271. https://doi.org/10.1016/j.ecoenv.2006.01.006 PMid:16530835

Compston, J. E., Vedi, S., Stephen, A. B., Bord, S., Lyons, A. R., Hodges, S. J., Scammell, B. E. 1999. Reduced bone formation after exposure to organophosphates. Lancet., vol. 354, p. 1791-1792. https://doi.org/10.1016/S0140-6736(99)04466-9 PMid:21697648

Coonse, K. G., Coonts, A. J., Morrison, E. V., Heggland, S. J. 2007. Cadmium induces apoptosis in the human osteoblast-like cell line Saos-2. J. Toxicol. Environ. Health A., vol. 70, no. 7, p. 575-581. PMid:17365611

Enlow, D. H., Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues. Part I. Texas J. Sci., vol. 8, p. 405-412.

Enlow, D. H., Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissues. Part III. Texas J. Sci., vol. 10, p. 187-230.

Erben, R. G. 1996. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec., vol. 246, p. 39-46. https://doi.org/10.1002/(SICI)1097-0185(199609)246:1<39::AID-AR5>3.0.CO;2-A PMid:8876822

Garg, U. K., Pal, A. K., Jha, G. J., Jadhao, S. B. 2004. Pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides on bone health of broiler chicks. Toxicologic. Pathol., vol. 32, no. 3, p. 364-369. https://doi.org/10.1080/01926230490431745 PMid:15204980

Garn, S. M., Rohmann, C. G., Nolan, P. 1991. The developmental nature of bone changes during aging. Nutr. Rev., vol. 49, no. 6, p. 176-178. https://doi.org/10.1111/j.1753-4887.1991.tb03014.x

Genever, P. G., Birch, M. A., Brown, E., Skerry, T. M. 1999. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? Bone, vol. 24, no. 4, p. 297-304. https://doi.org/10.1016/S8756-3282(98)00187-2 PMid:10221541

Grisaru, D., Lev-Lehman, E., Schapira, M., Chaikin, E., Lessing, J. B., Eldor, A., Eckstein, F., Soreq, H. 1999. Human osteogenesis involves differentiation-dependent increases in the morphogenically active 39 alternative splicing variant of acetylcholinesterase. Mol. Cell Biol., vol. 19, no. 1, p. 788-795. PMid:9858601

Hofstetter, W. 2007. Bone remodeling. Eur. Cell Mater., vol. 14, p. 31.

Hoogduijn, M. J., Rakonczay, Z., Genever, P. G. 2006. The effects of anticholinergic insecticides on human mesenchymal stem cells. Toxicol. Sci., vol. 94, no. 2, p. 342-350. https://doi.org/10.1093/toxsci/kfl101 PMid:16960032

Inkson, C. A., Brabbs, A. C., Grewal, T. S., Skerry, T. M., Genever, P. G. 2004. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone, vol. 35, no. 2, p. 819-827. https://doi.org/10.1016/j.bone.2004.05.026 PMid:21697648

Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., Vahter, M. 1998. Health effects of cadmium exposure - a review of the literature and a risk estimate. Scand. J. Work Environ. Health, vol. 24 (Suppl 1), p. 1-51. PMid:9569444

Järup, L., Ákesson, A. 2009. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol., vol. 238, p. 201-208. https://doi.org/10.1016/j.taap.2009.04.020 PMid:19409405

Lari, R., Elahi, M. H., Lari, P. 2012. Diazinon exposure reduces trabecular and cortical bone mineral density. J. Med. Toxicol., vol. 8, p. 231.

Lévesque, M., Martineau, C., Jumarie, C., Moreau, R. 2008. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells. Toxicol. Appl. Pharmacol., vol. 231, no. 3, p. 308-317. https://doi.org/10.1016/j.taap.2008.04.016 PMid:18538363

Li, J. P., Akiba, T., Marumo, F. 1997. Long-term, low-dose, cadmium-induced nephropathy with renal osteopathy in ovariectomized rats. J. Toxicol. Sci., vol. 22, no. 3, p. 185-198. https://doi.org/10.2131/jts.22.3_185 PMid:9279821

Ludle, J. L., Mehrle, M. P., Foster, L. M., Earlkaiser, T. 1979. Bone development in black ducks as affected by dietarytoxophene. Pestic. Biochem. Physiol., vol. 10, p. 168-173. https://doi.org/10.1016/0048-3575(79)90018-X

Martiniaková, M., Grosskopf, B., Vondráková, M., Omelka, R., Fabiš, M. 2005. Observation of the microstructure of rat cortical bone tissue. Scripta Med., vol. 78, no. 1, p. 45-50. http://www.med.muni.cz/biomedjournal/pdf/2005/01/45-50.pdf

Martiniaková, M., Grosskopf, B., Omelka, R., Dammers, K., Vondráková, M., Bauerová, M. 2007. Histological study of compact bone tissue in some mammals: a method for species determination. Int. J. Osteoarch., vol. 17, no. 1,

p. 82-90. https://doi.org/10.1002/oa.856

Martiniaková, M., Omelka, R., Grosskopf, B., Sirotkin, A. V., Chrenek, P. 2008. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand., vol. 50, p. 15. https://doi.org/10.1186/1751-0147-50-15 PMid:18522730

Martiniaková, M., Omelka, R., Grosskopf, B., Mokošová, Z., Toman, R. 2009. Histological analysis of compact bone tissue in adult laboratory rats. Slovak J. Anim. Sci., vol. 42, p. 56-59. http://www.cvzv.sk/slju/sup09/Martiniakova.pdf

Martiniaková, M., Chovancová, H., Omelka, R., Boboňová, I 2013. Effects of risk substances on bone tissue structure in rats (in Slovak): scientific monograph. Nitra: UKF, p. 187. ISBN 978-80-558-0295-4.

Meneely, G. A., Wyttenbach, C. R. 1989. Effects of the organophosphate insecticides diazinon and parathion on bobwhite quail embryos: Skeletal defects and acetylcholinesterase activity. J. Exp. Zool., vol. 252, no. 1, p. 60-70. https://doi.org/10.1002/jez.1402520109 PMid:2809535

Montz, W. E. Jr. 1983. Effects of organophosphate insecticides on aspects of reproduction and survival in small mammals: dissertation thesis. Blacksburg: Virginia Polytechnic Institute and State University. 176 p.

Moulis, J. -M., Thévenod, F. 2010. New perspectives in cadmium toxicity: an introduction. Biometals, vol. 23, no. 5, p. 763-768. https://doi.org/10.1007/s10534-010-9365-6 PMid:20632201

Nassredine, L., Parent-Massin, D. 2002. Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol. Lett., vol. 127, no. 1-3, p. 29-41.

http://www.sciencedirect.com/science/article/pii/S0378427401004805#

Noël, L., Guérin, T., Kolf-Clauw, M. 2004. Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health. Food Chem. Toxicol., vol. 42, no. 8, p. 1203-1210. https://doi.org/10.1016/j.fct.2004.02.017 PMid:15207369

Oruc, Ö. E., Usta, D. 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ. Toxicol. Pharmacol., vol. 23, no. 1, p. 48-55. https://doi.org/10.1016/j.etap.2006.06.005 PMid:21783736

Reim, N. S., Breig, B., Stahr, K., Eberle, J., Hoeflich, A., Wolf, E., Erben, R. G. 2008. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J. Bone Miner. Res., vol. 23, no. 5, p. 694-704. https://doi.org/10.1359/jbmr.080202 PMid:18433303

Ricqlés, A. J. de, Meunier, F. J., Castanet, J., Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Hall, B. K. (ed.): Bone 3, Bone Matrix and Bone Specific Products. Boca Raton: CRC Press, p. 1-78. ISBN 0-8493-8823-6.

Salehi, M., Jafari, M., Moqadam, M. S., Salimian, M., Asghari, A. R., Nateghi, M., Abasnejad, M., Haggholamali, M. 2009. The effect of diazinon on rat brain antioxidant system. Toxicol. Lett., vol. 189S, p. 123S. https://doi.org/10.1016/j.toxlet.2009.06.424

Seeman, E. 2008. Bone quality: the material and structural basis of bone strength. J. Bone Miner. Metab., vol. 26, no. 1, p. 1-8. https://doi.org/10.1007/s00774-007-0793-5 PMid:18095057

Smith, S. S., Reyes, J. R., Arbon, K. S., Harvey, W. A., Hunt, L. M., Heggland, S. J. 2009. Cadmium-induced decrease in RUNX2 mRNA expression and recovery by the antioxidant N-acetylcysteine (NAC) in the human osteoblast-like cell line, Saos-2. Toxicol. Vitro., vol. 23, no. 1, p. 60-66. https://doi.org/10.1016/j.tiv.2008.10.011 PMid:19017541

Srinivasan, R., Ramprasath, C. 2011. Protective role of silibinin in cadmium induced changes of acetylcholinesterase, ATPases and oxidative stress in brain of albino wistar rats. J. Ecobiotechnol., vol. 3, p. 34-39.

Toman, R., Adamkovičová, M., Hluchý, S., Cabaj, M., Golian, J. 2011. Quantitative analysis of the rat testes after an acute cadmium and diazinon administration. Animal Sci. Biotech., vol. 44, no. 2, p. 188-191. http://spasb.ro/index.php/spasb/article/view/638

Toman, R., Hluchý, S., Golian, J., Cabaj, M., Adamkovičová, M. 2012. Diazinon and cadmium neurotoxicity in rats after an experimental administration. Scientific Papers: Animal Science and Biotechnologies, vol. 45, no. 2, p. 137-141. http://spasb.ro/index.php/spasb/article/view/334

Wang H., Zhu, G., Shi, Y., Weng, S., Jin, T., Kong, Q., Nordberg, G. F. 2003. Influence of environmental cadmium exposure on forearm bone density. J. Bone Miner. Res., vol. 18, no. 3, p. 553-560. https://doi.org/10.1359/jbmr.2003.18.3.553 PMid:12619941

WHO: Environmental Health Criteria 134, Cadmium. Geneva: IPCS; 1992.

Wilson, A. K., Cerny, E. A., Smith, B. D., Wagh, A., Bhattacharyya, M. H. 1996. Effects of cadmium on osteoclast formation and activity in vitro. Toxicol. Appl. Pharmacol., vol. 140, no. 2, p. 451-460. https://doi.org/10.1006/taap.1996.0242 PMid:8887463

Wyttenbach, C. R., Hwang, J. D. 1984. Relationship between insecticide-induced short and wry neck and cervical defects visible histologically shortly after treatment of chick embryos. J. Exp. Zool., vol. 229, no. 3, p. 437-446. https://doi.org/10.1002/jez.1402290311 PMid:6707597

Downloads

Published

2014-05-01

How to Cite

Chovancová, H. ., Omelka, R. ., Boboňová, I. ., Formicki, G. ., Toman, R. ., & Martiniaková, M. . (2014). Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats. Potravinarstvo Slovak Journal of Food Sciences, 8(1), 107–113. https://doi.org/10.5219/343

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.