Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants

Authors

  • Dana Hrubošová University of Pardubice, Faculty of chemical technology, Department of biological and biochemical sciences, Studentská 95, 532 10 Pardubice
  • Jarmila Vytřasová University of Pardubice, Faculty of chemical technology, Department of biological and biochemical sciences, Studentská 95, 532 10 Pardubice
  • Iveta Brožková University of Pardubice, Faculty of chemical technology, Department of biological and biochemical sciences, Studentská 95, 532 10 Pardubice

DOI:

https://doi.org/10.5219/417

Keywords:

disinfectant, T-2 toxin, deoxynivalenol, Fusarium, ELISA

Abstract

The aim of the work was to examine the effect of different disinfectants on production trichothecenes (especially of T-2 toxin and deoxynivalenol). Lipophilicity, chemical structure, the presence of bioactive groups and functional groups in their structure modifies biological activity and toxic potency of trichothecenes. For this reason, limits have been established designating maximum levels of mycotoxins in cereals while maintaining proper growing practices. Appropriate nutritive media were prepared with different concentration of tested disinfectants (Desanal A  plus, ProCura spray and Guaa-Pool) and were inoculated using  Fusarium strains. The density of  Fusarium was 105 spores per mililitre. Nutrient media was cultivated at 15 °C and 25 °C for seven days. The strains of Fusarium graminearum CCM F-683 and Fusarium species (isolated from barley) produced quantities of deoxynivalenol. Fusarium poae CCM F-584 and Fusarium species (isolated from malthouse air) produced quantities of T-2 toxin. Desanal A plus prevented Fusarium growth and production of T-2 toxin and deoxynivalenol at the concentration 10%. It is an alkaline disinfectant on the basis of active chlorine and the surfactant that contains ˂5% of NaClO. ProCura spray at the concentration 0.6% proved to be very effective. This disinfectant contains 35% of propan-1-ol and 25% of propan-2-ol.  Guaa-Pool at the concentration 0.004% proved to be very effective. It is a polymeric disinfectant with anion surface-acting agent and it contains ˂0.9% of polyhexamethylene guanidine hydrochloride and ˂0.2% of alkyl (C12-C16) dimethylbenzyl ammonium chloride. Lower contentration of  disinfectants that  not prevented growth of Fusarium caused higher production  of T-2 toxin and deoxynivalenol. The contents of T-2 toxin and deoxynivalenol were analyzed by enzyme-linked immunosorbent assay (ELISA) using commercially produced kits (Agra Quant® Deoxynivalenol Test kit and Agra Quant® T-2 toxin Test kit). The experiment showed that the variability in the production of T-2 toxin and deoxynivalenol depended on the Fusarium strain used, concentration of disinfectants and temperature of cultivation.

Downloads

Download data is not yet available.

References

Běláková, S., Benešová, K., Mikulíková, R., Svoboda, Z. 2012. Factors Affecting Gushing. Kvasný Průmysl, vol. 56, no. 3, p. 131-137. ISSN 0023-5830.

Bottalico, A., Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, vol. 108, no. 7, p. 611-624. https://doi.org/10.1023/A:1020635214971

Bryden, W. L. 2007. Mycotoxins in the food chain: human health implications. Asia Pacific Journal of Clinical Nutrition, vol. 16, no. S1, p. 95-101. PMid:17392084

Creppy, E. E. 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, vol. 127, no. 1-3, p. 19-28. https://doi.org/10.1016/S0378-4274(01)00479-9 PMid:12052637

Delgado, J. A., Schwarz, P. B., Viviana, J. G., Rivera-Varas, V., Gary A. 2010. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum. Phytopathology, vol. 100, no. 3, p. 290-296. https://doi.org/10.1094/PHYTO-100-3-0290 PMid:20128703

Desjardins, A. E. 2006. Fusarium Mycotoxins, Chemistry, Genetics, and Biology. 1st ed. Minnesota, USA: The American Phytopathological Society, 260 p. ISBN 0-89054-335-6.

D'Mello, J. P. F., Palcinta, C. M., Macdonald, A. M. C. 1999. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology, vol. 80, no. 3, p. 183-205. https://doi.org/10.1016/S0377-8401(99)00059-0

Gärtner, B. H., Munich, M., Kleijer, G., Mascher, F. 2008. Characterisation of kernel resistance against Fusarium infection in spring wheat by baking quality and mycotoxin assessments. European Journal of Plant Pathology, vol. 120, no. 1, p. 61-68. https://doi.org/10.1007/s10658-007-9198-5

Haidukowski, M., Visconti, A, Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L., Balestrazzi, R., Pascale, M. 2012. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytophatologia Mediterranea, vol. 51, no. 1, p. 236-246. [cit.2013-05-09] Retrieved from the web: http://www.fupress.net/index.php/pm/article/view/9401/10304

Havlová, P., Lancová, K., Váňová, M., Havel, J., Hajšlová, J. 2006. The effect of fungicide treatment on selected duality parameters of barley and malt. Journal of Agricultural and Food Chemistry, vol. 54, no. 4 p. 1353-1360. https://doi.org/10.1021/jf0581372 PMid:16478260

Heier, T., Jain, S. K., Kogel, K. H., Pons-Kühnemann, J. 2005. Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. Journal of Phytopathology,

vol. 153, no. 9, p. 551-557. https://doi.org/10.1111/j.1439-0434.2005.01021.x

Hlaváčková, L., Vytřasová, J, Novotná, Š., Moťková-Šnévajsová, P., Brožková, I., Honzlová, A. 2012. Effect of selected microorganisms on Fusarium toxins production. Analytical Letters, vol. 45, no. 7, p. 702-713. https://doi.org/10.1080/00032719.2011.653895

Hostynek, J. J., Wilhelm, K. p., Cua, A. B., Maibach, H. I. 2006. Irritation factors of sodium hypochlorite solutions in human skin. Contact Dermatitis, vol. 23, no. 5, p. 316-324. https://doi.org/10.1111/j.1600-0536.1990.tb05165.x PMid:1965715

Hrubošová-Hrmová, D., Vytřasová, J., Moťková, P. 2011. Effect of selected fungicides on Fusarium growth and toxins production. Czech Journal of Food Sciences, vol. 29, p. S69-S75. [cit.2013-05-09] Retrieved from the web: http://www.agriculturejournals.cz/publicFiles/54736.pdf

Hussein, S. H, Brasel, J. M. 2001. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology, vol 167, no. 2, p. 101-134. PMid:11567776

Kokkonen, M., Ojala, L., Parikka, P., Jestoi, M. 2010. Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Food Microbiology, vol. 143, no. 1-2, p. 17-25. https://doi.org/10.1016/j.ijfoodmicro.2010.07.015 PMid:20708288

Krska, R., Welzig, E., Boudra, H. 2007. Analysis of Fusarium toxins in feed. Animal Feed Science and Technology, vol. 137, no. 3, p. 241-264. https://doi.org/10.1016/j.anifeedsci.2007.06.004

Li, Y., Wang, Z., Beier, R. C., Shen, J., De Smet, D., De Seager, S., Zhang, S. 2011. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. Joural of Agricultural and Food Chemistry, vol. 59, no. 8, p. 3441-3453. https://doi.org/10.1021/jf200767q

Malachová, A., Hajšlová, J., Ehrenbergerová, J., Kostelánská, M., Zachariášová, M., Urbanová, J., Cerkal, R., Šafránková, I., Marková, J., Vaculová, K., Hrstková, P. 2010. Fusarium mycotoxins in spring barley and their transfer into malt. Kvasný Průmysl, vol. 56, no. 3, p. 131-137. ISSN 0023-5830.

Malíř, F., Ostrý, V. 2003. Fungi, mycotoxins and human health. (in Czech) 1st ed. Adamov, Czech Republic: Mikada, 349 p. ISBN 80-7013-395-3.

Monaci, L., De Angelis, E., Visconti, A. 2011. Determination of deoxynivalenol, T-2 and HT-2 toxins in a bread model food by liquid chromatography-high resolution-orbitrap-mass spectrometry equipped with a high-energy collision dissociation cell. Journal of Chromatography A, vol. 1218, no. 48, p. 8646-8654. https://doi.org/10.1016/j.chroma.2011.10.008 PMid:22033110

Noske, G. L., Shearer, B. L. 1985. Quaternary ammonium compounds were more effective than a phenolic compound or sodium hypochlorite in lnhibitlng growth of Phytophthora cinnamomi (rands). Australasian Plant Pathology, vol. 14, no. 2, p. 37-40. https://doi.org/10.1071/APP9850037

Pestka, J. J., Zhou, H. R., Moon, Y., Chung, Y. J. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, vol. 153, no. 1, p. 61-73. https://doi.org/10.1016/j.toxlet.2004.04.023 PMid:15342082

Reynolds, K. A., Boone, S., Bright, K. R., Gerba, C. P. 2012. Occurrence of household mold and efficacy of sodium hypochlorite disinfectant. Journal of Occupational and Environmental Hygiene, vol. 9, no. 11, p. 663-669. https://doi.org/10.1080/15459624.2012.724650 PMid:23016564

Schollenberger, M., Muller, H. M., Rufle, M., Terry-Jara, H., Suchý, S., Plank, S., Drochner, S. 2007. Natural occurrence of Fusarium toxins in soy food marketed in Germany. International Journal of Food Microbiology,

vol. 113, no. 2, p. 142-146. https://doi.org/10.1016/j.ijfoodmicro.2006.06.022 PMid:16854487

Snijders, Ch. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicology Letters, vol. 153, no. 1, p. 37-46. https://doi.org/10.1016/j.toxlet.2004.04.044

Suchomel, M., Gnant, W., Weinlich, M., Rotter, M. 2009. Surgical hand disinfection using alcohol: the effects of alcohol type, mode and duration of application. Journal of Hospital Infection, vol. 71, no. 3, p. 228-233. https://doi.org/10.1016/j.jhin.2008.11.006 PMid:19144448

Suchý, P., Herzig, I. 2005. Fungi and mycotoxins, prevention and decontamination in feed. (in Czech) VÚVL and VFU, Brno, [online] a.s. [cit.2013-05-09] Available at: http://www.bezpecna-krmiva.cz/soubory/2-studie_prof_sucheho.rtf

Sudakin, D. L. 2003. Trichothecenes in the environment: relevance to human health. Toxicology Letters, vol. 143, no. 2, p. 97-107. https://doi.org/10.1016/S0378-4274(03)00116-4 PMid:12749813

Thammawong, M., Okadome, H., Shiina, T., Nakagawa, H., Nagashima, H., Nakajima, T., Kushiro, M. 2011. Distinct distribution of deoxynivalenol, nivalenol, and ergosterol in Fusarium-infected Japanese soft red winter wheat milling fractions. Mycopathologia, vol. 172, no. 4, p. 323-330. https://doi.org/10.1007/s11046-011-9415-9 PMid:21424857

Vasatkova, A., Krizova, S., Adam, V., Zeman, L., Krizek R. 2009. Changes in metallothionein level in rat hepatic tissue after administration of natural mouldy wheat. International Journal of Molecular Sciences, vol. 10, no. 3, p. 1138-1160. https://doi.org/10.3390/ijms10031138 PMid:19399242

Wessels, S., Ingmer, H. 2013. Modes of action of three disinfectant active substances: a review. Regulatory Toxicology and Pharmacology, vol. 67, no. 3, p. 456-467. https://doi.org/10.1016/j.yrtph.2013.09.006 PMid:24080225

Weidenbőrner, M. 2001. Encyclopedia of Food Mycotoxins. Berlin, Germany: Springer - Verlag, Heidelberg, p. 93-110, ISBN 978-3-662-04464-3.

Wu, Q., Engemann, A., Cramer, B., Welsch, T., Yuan, Z., Humpf, H. U. 2012. Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Research, vol. 28, no. 3, p. 191-198. https://doi.org/10.1007/s12550-012-0134-y PMid:23606127

Downloads

Published

2015-03-06

How to Cite

Hrubošová, D. ., Vytřasová, J. ., & Brožková, I. . (2015). Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 18–23. https://doi.org/10.5219/417

Most read articles by the same author(s)