Colonization of grapes berries and cider by potential producers of patulin


  • Dana Tančinová Slovak University of Agriculture in Nitra, Faculty of biotechnology and food sciences, Department of microbiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Soňa Felšöciová Slovak University of Agriculture in Nitra, Faculty of biotechnology and food sciences, Department of microbiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľubomí­r Rybárik Báb 49, 951 34 Báb
  • Zuzana Mašková Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra
  • Miroslava Cí­sarová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra



grapes, patulin, Penicillium, Aspergillus, mycotoxin


The aim of this study was to detect potential producers of mycotoxin patulin from grapes (berries, surface sterilized berries - endogenous mycobiota and grape juice) of Slovak origin. We analyzed 47 samples of grapes, harvested in 2011, 2012 and 2013 from various wine-growing regions. For the isolation of species we used the method of direct plating berries and surface-sterilized berries (using 1% freshly pre-pared chlorine) berries on DRBC (Dichloran Rose Bengal Chloramphenicol agar). For the determination of fungal contamination of grape juice we used plate-dilution method and DRBC and DG18 (Dichloran 18% Glycerol agar) as media. The cultivation in all modes of inoculation was carried at 25 ±1 °C, for 5 to 7 days. After incubation Aspergillus and Pencillium isolates were inoculated on the identification media. The potential producers of patulin were isolated from 23 samples berries, 19 samples of surface-sterilized berries and 6 samples of grape juice. Overall, the representatives of producers of patulin were detected in 32 (68.1%) samples (75 isolates). In this work we focused on the detection of potential producers of patulin, Penicillium expansum (the most important producer of patulin in fruits), Penicillium griseofulvum and Aspergillus clavatus were isolated. Chosen isolates of potential patulin producers were tested for the ability to produce relevant mycotoxins in in vitro conditions using thin layer chromatography method. The ability to produce patulin in in vitro condition was detected in 82% of isolates of Penicillium expansum, 65% of Penicillium griseofuvum and 100% of Aspergillus clavatus. Some isolates of Penicillium expansum were able to produce citrinin and roquefortine C, Penicillium griseofulvum cyclopiazonic acid, griseofulvin and roquefortin C, also.


Download data is not yet available.


Andersen, B., Smedsgaard, J., Frisvad, J. 2004. Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, vol. 52, no. 8, p. 2421-2428.

Barkai-Golan, R. 2008. Penicillium Mycotoxins. In Barkai-Golan, R., Paster, N. Mycotoxins in Fruits and Vegetables. USA: Elsevier, p 153-183. ISBN 978-0-12-374126-4.

Bennett, J. W., Klich, M. 2003. Mycotoxins. Clinical Microbiology Reviews, vol. 16, no. 3, p. 497-516.

Bragulat, M. R., Abarca, M. L., Cabañes, F. J. 2008. Low occurrence of patulin- and citrinin-producing species isolated from grapes. Letters in Applied Microbiology, vol. 47, no. 4, p. 286-289. PMid:19241521

Bünger, J., Westphal, G., Mönnich, A., Hinnendahl, B., Hallier, E., Müller, M. 2004. Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology, vol., 202, no. 3, p. 199-211.

Burdock, G. A., Flamm, W. G. 2000. Review article: Safety assessment of the mycotoxin cyclopiazonic acid (Review). Internation Jounal of Toxicology, vol. 19, no. 3, p. 195-218.

Cole, R. J., Cox, R. H. 1981. Hanbook of toxic fungal metabolites. New York: Academic Press, p. 527-568.

De Carli L., Larizza L. 1988. Griseofulvin. Mutation Research/Reviews in Genetic Toxicology, vol. 195, no. 2, p. 91-126.

Dombrink-Kurtzman, M. A., Engberg, A. E. 2006. Byssochlamys nivea with patulin-producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence homology to Penicillium expansum and Penicillium griseofulvum. Mycological Research, vol. 110, no. 9,

p. 1111-1118.

Elhariry, H., Bahobial, A., A., Cherbawy, Y. 2011. Genotypic identification of Penicillium expansum and the role of processing on patulin presence in juice. Food and Chemical Toxicology, vol. 49, no. 4, p. 941-946.

Frisvad, J. C., Thrane, U., Samson, R. A., Pitt, J. I. 2006. Important mycotoxins and the fungi which produce them. In Hocking, A. D. et al. Advances in Experimental Medicine and Biology, USA : Springer Science + Business Media, p. 3-31.

Frisvad, J. C., Andersen, B., Samson, R. A. 2007a. Association of moulds to foods. In Dijksterhuis, J., Samson, R. A. Food Mycology a Multifaceted Approach to Fungi and Food. Boca Raton: CRC Press, p. 199-239. ISBN 0-8493-9818-5

Franck, J., Latorre, B. A., Torres, R., Zoffoli, J. P. 2005. The effect of preharvest fungicide and postharvest sulphur dioxide use on postharvest decay of table grapes caused by Penicillium expansum. Potharvest Biology and Technology, vol. 37, no. 1, p. 20-30.

Frisvad, J. C., Thrane, U., Samson, R. A. 2007b. Mycotoxin producers. In Dijksterhuis, J., Samson, R. A. Food Mycology a Multifaceted Approach to Fungi and Food. Boca Raton : CRC Press, p. 135-159. ISBN 0-8493-9818-5

Gonzáles, H. H. L., Pacin, A., Resnik, S. L., Martinez, E. J. 1996. Deoxynivalenol and contaminant mycoflora in freshly harvested Argentinean wheat in 1993. Mycopathologia, vol. 135, no. 2, p. 129-134.

Gautam, A., Sharma, S., Bhadauria, R. 2009. Detection of toxigenic fungi and mycotoxins in medicinally important powdered herbal drugs. The Internet Journal of Microbiology, vol. 7, no. 2. [cit. 2015-03-02] Available at:

Klich, M. A. 2002. Identification of common Aspergillus species. Wageningen: Ponsen & Looijen, 116 p. ISBN 90-70351-46-3.

Labuda, R., Tančinová, D. 2006. Fungi recovered from slovakian poultry feed mixtures and their toxinogenity. Annals of Agricultural and Environmental Medicine, vol. 13, p. 193-200.

Marin, S., Ramos, A. J., Cano-Sancho, G., Sanchis, V. 2013. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, vol. 60, p. 218-237.

Moake, M. M., Padila-Zakour, O. L., Worobo, R. W. 2005. Comprehensive review of patulin control methods in food. Comprehensive Review in Food Science and Food Safety, vol. 4, no. 1, p. 8-21.

Morales, H., Sanchis, V., Rovira, A., Ramos, A. J., Marin, S. 2007. Patulin accumulation in apples during postharvest: effect of controlled atmosphere storage and fungicide treatments. Food Control, vol. 18, no. 11, p. 1443-1448.

Neri, F., Donati, I., Veronesi, F., Mazzoni, D., Mari, M. 2010. Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. Internationa Journal of Food Microbiology, vol 143, no. 3, p. 109-117.

Pitt, J. I., Hocking, A.D. 2009. Fungi and food spoilage. 3rd ed. London, New York: Springer Science + Business Media, LLC 2009, 519 p. ISBN 978 0-387-92206-5.

Puel, O., Galtier, P., Oswald, I.P. 2010. Biosynthesis and toxicological effects of patulin. Toxins, vol. 2, no. 4., p. 613-631.

Samson, R .A., Frisvad, J. C. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. In Studies in Mycology 49, Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures, 2004, 260 p. ISBN 90-70351-53-6.

Samson, R. A., Van Reenen-Hoekstra, E. S, Frisvad, J. C., Filtenborg, O. 2002. Introduction to food-borne fungi. Utrecht: Centraalbureau voor Schimmelcultures, 389 p. ISBN 90-70351-42-0.

Samson, R. A., Houbraken, U., Thrane, U., Frisvad, J. C., Andersen, B. 2010. Food and Indoor Fungi. Utrecht : CBS-KNAW Fungal Biodiversity Centre, 390 p. ISBN 978-90-70351-82-3.

Samson, R. A., Varga, J. eds. 2007. Aspergillus systematics in the genomic era. Studies in Mycology, 59, Utrecht: CBS Fungal Biodiversity Centre, 206 p. ISBN 978-90-70351-69-4.

Saxena, N., Ansari, K. M., Kumar, R., Dhawan, A., Dwivedi, P. D., Das, M. 2009. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p 21/WAF1 proteins in skin of mice. Toxicology and Applied Pharmacology, vol. 234, no. 2, p. 192-201.

Serra, R., Braga, A., Venâncio, A. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Research in Microbiology, vol. 156, no. 4, p. 515-521.

Serra, R., Lourenço, A., Alípio, P., Venâncio, A. 2006. Influence of the region on the mycotiota of grapes with emphansis on Aspergillus and Penicillium species. Mycological Research, vol. 110, no. 8, p. 971-978.

Sirot, V., Fremy, J. M., Leblanc, J. C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food and Chemical Toxicology, vol. 52, p. 1-11.

Weidenbörner, M. 2001. Encyclopedia of Food Mycotoxins. Springer Science + Business Media, 294 p. ISBN 3-540-67556-6.

Zaied, C., Zouaoui, N., Bacha, H., Abid, S. 2012. Natural occurrence of citrinin in Tunisian wheat grains. Food Control, vol. 28, no. 1, p. 106-109.

Zouaoui, N., Sbaii, N., Bacha, H., Abid-Essefi, S. 2015. Occurrence of patulin in various fruit juice marketed in Tunisia. Food Control, vol. 51, p. 356-360.




How to Cite

Tančinová, D. ., Felšöciová, S. ., Rybárik, Ľubomí­r ., Mašková, Z. ., & Cí­sarová, M. . (2015). Colonization of grapes berries and cider by potential producers of patulin. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 138–142.

Most read articles by the same author(s)

1 2 3 > >>