The heavy metals content in wild growing mushrooms from burdened Spiš area

Authors

  • Marek Slávik Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Tomáš Tóth Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Július Árvay Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľuboš Harangozo Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra
  • Miriama Kopernická Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Chemistry, Tr. A. Hlinku 2, 949 76 Nitra

DOI:

https://doi.org/10.5219/564

Keywords:

Mushrooms, heavy metals, soil, food chain, mercury, midle Spiš

Abstract

In this work, we evaluated the rate of entry of heavy metals into the edible parts of wild mushrooms, from central Spiš area. The area is characterized by extremely high content of heavy metals particularly mercury in abiotic and biotic components of ecosystems. The toxicity of heavy metals is well known and described. Known is also the ability of fungi to accumulate contaminants from substrates in which mushrooms grow. We have collected commonly consumed species of mushrooms (Russula vesca., Macrolepiota procera, Lycoperdon pyriforme, Lecinum piceinum, Boletus reticulatus). Sampling was conducted for two years 2012 and 2013. The samples taken mushrooms and substrates on which to grow, we determined heavy metal content (Cd, Pb, Cu), including total mercury content modified by atomic absorption spectrometry (AMA - 254). In the substrate, we determined the humus content and pH value. The heavy metal content in soils were evaluated according to Law no. 220/2004 Z.z The exceedance limit values of Cd, Pb, Cu and Hg was recorded. Most significantly the respective limit was recorded in soil samples in the case of mercury. The determined concentration Hg was 39.01 mg.kg-1. From the results, we evaluated the degree of ability to bioaccumulate heavy metals different kinds of fungi. We also evaluated the health safety of the consumption of these fungi on the comparison with the limit values provided in the food code of SR. We recorded a high rate of accumulation of mercury in the species Boletus reticulatus and Macrolepiota procera. For these types we recorded the most significant than allowed concentrations of mercury in mushrooms. The highest recorded concentration reached 17.64 mg.kg-1 Hg in fresh matter. The limit value was exceeded also in the case of copper. We do not recommend to increased consumption of wild mushrooms in the reference area.

Downloads

Download data is not yet available.

References

Čurlík, J., Ševčík, P. 1999. Geologický atlas Slovenskej republiky - pôdy. Záverečná správa. (Geological atlas of the Slovak Republik - soils. Final report). Bratislava: MŽP SK, VÚPOP, 137 p.

Falandysz, J. Gucia, M. 2008. Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). Environ Geochem Health, vol. 30, p. 121-125. https://doi.org/10.1007/s10653-008-9133-5 PMid:18239997

Garcia, M. A., Alonso, J., Melgar, M. J. 2009. Lead in edible mushrooms: Levels and bioaccumulation factors. Journal of Hazardous Materials, vol. 167, p. 777-783. https://doi.org/10.1016/j.jhazmat.2009.01.058 PMid:19217716

Gillis, B., S., Arbieva, Z., Gavin, I., M. 2012. Analysis of lead toxicity in human cells. BMC Genomics, vol. 13, 344 p. https://doi.org/10.1186/1471-2164-13-344 PMid:22839698

Godt, J., Scheidig, f., Grosse-Siestrup, Ch., Esche, V., Brandenburg, P., Reich, A., Groneberg, D. A. 2006. The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology. vol. 1. https://doi.org/10.1186/1745-6673-1-22 PMid:16961932

Hronec, O., Vilček, J., Tóth, T., Andrejovský, P., Adamišin, P., Andrejovská, A., Daňová, M., Huttmanová, E., Vilimová, M., Škultéty, P., Juhśzová, M. 2008. Ťažké kovy v pôdach a rastlinách Rudniansko-gelnickej zaťaženej oblasti. (Heavy metals in soils and plants in Rudniansko-gelnicka

burdened area) Acta regionalia et enviromentalica, vol. 1, p. 24-28.

Kalač, P. 2010. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000 - 2009. Food Chemistry, vol. 122, p. 2-15. https://doi.org/10.1016/j.foodchem.2010.02.045

Mahmoode, A., Malik, R. 2013 Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, vol. 7,

p. 543-549. https://doi.org/10.1016/j.arabjc.2013.07.002

Melgar, M. J., Alonso, J., García, M. A. 2009. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk, Science of the Total Environment, vol. 407, no. 20, p. 5328-5334. https://doi.org/10.1016/j.scitotenv.2009.07.001

Ordóñez, A., Álvarez, R., Loredo, J. 2013. Asturian mercury mining district (Spain) and the environment: a review. Environmental Science and Pollution Research International, vol. 20, no. 11, p. 7490-7508. https://doi.org/10.1007/s11356-013-1663-4 PMid:23589252

Ostos, C., Pérez-Rodríguez, F., Arroyo, B. M., Moreno-Rojas, R. 2015. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. Journal of Food Composition and Analysis, vol. 37, p. 136-142. https://doi.org/10.1016/j.jfca.2014.04.014

Paraskevi, K. O., Panayotis, G. V., Evangelos, K. P., Kyriakos, A. R. 2007. Determination of metal content in wild edible mushroom species from regions of Greece, Journal of Food Composition and Analysis, vol. 20, p. 480-486. https://doi.org/10.1016/j.jfca.2007.02.008

Rieder, S. R., Brunner, I., Horvat, M., Jacobs, A., Frey, B. 2011. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environmental Pollution vol. 159, no. 10, p. 2861-2869. https://doi.org/10.1016/j.envpol.2011.04.040

Shaligram, S., Campbell, A. 2013. Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicology in Vitro, vol. 27, p. 844-851. https://doi.org/10.1016/j.tiv.2012.12.026 PMid:23287045

Timoracká, M., Vollmannová, A., Ismael, D. 2011. Minerals, trace elements and flavonoids content in white and coloured kidney bean. Potravinarstvo, vol. 5, no. 1, p. 56-60. https://doi.org/10.5219/116

Tüzen, M. 2003. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, vol. 74, p. 289-297. https://doi.org/10.1016/S0026-265X(03)00035-3

Zahir, F., Rizwi, S. J., Haq, S. K., Khan, R. H. 2005. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology. vol. 20, p. 351-360. https://doi.org/10.1016/j.etap.2005.03.007 PMid:21783611

Závodský, D. 1991. Ochrana ovzdušia, (Protection of Atmosfere), Bratislava : SHMÚ. p. 85-87.

Downloads

Published

2016-05-02

How to Cite

Slávik, M. ., Tóth, T. ., Árvay, J. ., Harangozo, Ľuboš ., & Kopernická, M. . (2016). The heavy metals content in wild growing mushrooms from burdened Spiš area. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 232–236. https://doi.org/10.5219/564

Most read articles by the same author(s)

1 2 3 > >>