Microbiological evaluation of fish

Authors

  • Olga Cwiková Mendel University in Brno, Faculty of Agronomy, Department of Food Technology, Zemědělská 1, 61300 Brno

DOI:

https://doi.org/10.5219/617

Keywords:

fish, TAC, E. coli, Salmonella spp., Vibrio parahaemolyticus, storage temperature

Abstract

Fish meat has a specific composition that positively influences human health. Thanks to this composition, it is an excellent nutritional medium for growth and reproduction of undesirable microorganisms, which may cause spoilage and they can also lead to alimentary illnesses. Microbiota of fish is dominated by Gram negative and psychrophilic bacteriaMicrobial contamination causes fish deterioration and leads to the end of its shelf-life when reaches levels between 107 and 109 CFU.g-1. The most appropriate temperature for storage of fish is between -1 °C and 4 °C and the ideal relative air humidity is 80 to 85%. The objective of the work was to evaluate microbiological quality of fresh fish (Rainbow Trout, Atlantic Salmon, Atlantic Cod) bought in various types of stores in the Czech Republic and to evaluate if different storage temperatures have influence on the quantity of microorganisms. The following microorganisms were monitored: the total aerobic count (TAC), coliform bacteria, E. coliSalmonella sppand Vibrio parahaemolyticus. Based on the obtained results it is possible to state that difference between individual stores (p >0.05) in the total aerobic count and the quantity of E. coli (except for cod) was not proven. After 2 days of storage there was increase (p ˂0.05) of the total aerobic count in case of all monitored fish species from all stores. In case of coliform bacteria and E. coli there was increase (p ˂0.05) of their quantity in a majority of the analysed samples. Different storage temperature (4 °C and 8 °C) did not have influence (p ˂0.05) on the TAC, the quantity of coliform bacteria (except for cod) and the quantity of E. coli (except for trout).

Downloads

Download data is not yet available.

References

Aagesen, A., M., Häse, C. C. 2014. Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas. Food Microbiology, vol. 38, p. 93-103. https://doi.org/10.1016/j.fm.2013.08.008 PMid:24290632

Alaboudi, A. R., Ababneh, M., Osaili, T. M., Al Shloul, K. 2016. Detection, Identification, and Prevalence of Pathogenic Vibrio parahaemolyticus in Fish and Coastal Environment in Jordan. Journal of Food Science, vol. 81, no. 1, p. 130-134. https://doi.org/10.1111/1750-3841.13151 PMid:26554333

Amagliani, G., Brandi, G., Schiavano, G. F. 2012. Incidence and role of Salmonella in seafood safety (Review). Food Research International, vol. 45, no. 2, p. 780-788. https://doi.org/10.1016/j.foodres.2011.06.022

Buchtová, H. 2001. Hygiene and Technology of Fish and seafood Treatment: Alimentary illnes of fish; Freezing Industry. (Hygiena a technologie zpracování ryb a ostatních vodních živočichů: Alimentární onemocnění z ryb; Mrazírenství). 1st ed. Brno: University of Veterinary and Pharmaceutical Sciences, Faculty of Veterinary Hygiene and Ecology, 164 p. ISBN 80-7305-401-9.

Clonan, A., Holdsworth, M., Swift, J., Leibovici, D., Wilson, P. 2012. The dilemma of healthy eating and environmental sustainability: The case of fish. Public Health Nutrition, vol. 15, p. 277-284. https://doi.org/10.1017/S1368980011000930 PMid:21619717

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. OJ L 338, 22/12/2005, p. 1-6.

ČSN 569609:2008. Guides to good hygiene and manufacturing practice-Microbiological criteria for foods. Principles for the establishment and application.

Fernandes, R. 2009. Fish and Seafood. UK, Leather Food International Ltd. 258 p. ISBN: 978-1-905224-76-0.

Görner, F. and Valík, L. 2004. Applied food microbiology. (Aplikovaná mikrobiológia poživatín). Bratislava, Malé Centrum, PPA. 528 p. ISBN 80-967064-9-7.

Gram, L., Huss, H. H. 1996. Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, vol. 33, p. 121-137. https://doi.org/10.1016/0168-1605(96)01134-8

Grigoryan, K., Badalyan, G., Andriasyan, D. 2010. Prevalence of Staphylococcus aureus in Fish Processing Factory. Potravinarstvo, vol. 4, no. 2, p. 25-28. https://doi.org/10.5219/47

Hempel, A., Borchert, N., Walsh, H., Choudhury, K. R., Kerry, J. P., Papkovsky, D. B. 2011. Analysis of Total Aerobic Viable Counts in Raw Fish by High-Throughput Optical Oxygen Respirometry. Journal of Food Protection, vol. 74, no. 5, p. 776-82. https://doi.org/10.4315/0362-028X.JFP-10-352 PMid:21549048

Ingr, I. 2010. Fish Quality and Processing. (Jakost a zpracování ryb). 2nd ed. Brno: Mendelova univerzita v Brně, 102 p. ISBN 978-80-7375-382-5.

ISO 4832:2010. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coliforms, Colony-count technique.

ISO 4833:2003. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of micro-organisms, Colony-counttechnique at 30 °C.

ISO 6887-2:2003. Microbiology of food and animal feeding stuffs-Preparation of test samples, initial suspension and decimal dilutions for microbiological examination - Part 2: Specific rules for the preparation of meat and meat products.

ISO 7218:2007. Microbiology of food and animal feeding stuffs-General requirements and guidance for microbiological examinations.

Komprda, T. 2004. General food hygiene. (Obecná hygiena potravin). 2nd ed. Brno: MZLU, 112 p. ISBN 80-7157-757-X.

Kordiovská, P., Vorlová, L., Karpíšková, R., Lukášová, J. 2004. Potential risk of biogenic amine formation in carp muscle (Cyprinus carpio). In Proceeding of the IV. international conference Rizikové faktory potravového reťazca (Risk factors of food chain) SPU : Nitra, Slovakia, 7th of October 2004. Available at: https://www.researchgate.net/publication/267197428.

Matyáš, Z., Pavlíček, J., Sovjak, R., Kopřiva, V., Pažout, V., Hejlová, Š., Vojtěch, J., Horký J., Hlaváček, J. 2002. Resources for implementation of HACCP plan to branch raw materials treatment and food of animal origin: fish, mollusc, crustacean, game, poultry, eggs, honey, delicatessen. Podklady pro zavedení HACCP do oboru zpracování surovin a potravin živočišného původu: ryby, měkkýši, korýši, zvěřina, drůbež, vejce, med, lahůdky. 1st ed. Brno, Czech Republic : Veterinary and Pharmacy University, Faculty of Veterinary hygiene and ecology, 141 p. ISBN 80-7305-428-0.

Miks-Krajnik, M., Yoonc, Y-J., Ukukud, D. O., Yuka H-G. 2016. Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives. Food Microbiology, vol. 53, Part B, p. 182-191. https://doi.org/10.1016/j.fm.2015.10.001 PMid:26678146

Nespolo, N. M., Martineli, T. M., Rossi, O. D. 2012. Microbiological Quality of Salmon (Salmo salar) Sold in Cities of the State of Sao Paulo, Brazil. Brazilian Journal of Microbiology, vol. 43, no. 4, p. 1393-1400. https://doi.org/10.1590/S1517-83822012000400021 PMid:24031968

Novoslavskij, A., Terentjeva, M., Eizenberga, I., Valciņa, O., Bartkevičs, V., Bērziņš, A. 2016. Major foodborne pathogens in fish and fish products: a review. Annals of Microbiology, vol. 66, no. 1, p. 1-15. https://doi.org/10.1007/s13213-015-1102-5

Parlapani, F. F., Boziaris, I. S. 2016. Monitoring of spoilage and determination of microbial communities based on 16S rRNA gene sequence analysis of whole sea bream stored at various temperatures. LWT-Food Science and Technology, vol. 66, p. 553-559. https://doi.org/10.1016/j.lwt.2015.11.007

Patil, S. S., Koli, J. M., Sharangdher, S. T., Sharangdher, M. T. 2013. Storage charakteristice of „fish pakoda" from pink perch (Nemipterus japonicus) meat at 4 °C. Ecology, Environment and Conservation, vol. 19, no. 3, p. 877-880.

Pipová, M., Buchtová, H., Cabadaj, R., Gima, J., Hanzel, S., Iglovská, N., Kantíková, M., Kohút, J., Košuth, P., Kozák, A., Nagy, J., Pliešovský, J., Rajský, D., Sokol, J., Steinhauserová, I., Večerek, V. 2006. Hygiene and technology of freshwater and sea fish treatment. (Hygiena a technológia spracovania sladkovodných a morských rýb). Košice, Slovakia: University of Veterinary Medicine, 417 p. ISBN 80-8077-048-4.

Remenanta, B., Jaffrèsa, E., Dousseta, X., Pileta, M-F., Zagoreca, M. 2015. Spoilers, wonder spores and diehard microorganisms: New insights to integrate these super foes in food spoilage risk management. Food Microbiology, vol. 45, Part A, p 45-53.

Scheleguedaa, L. I., Zalazara, A. L., Gliemmoa, M. F., Camposa, C. A. 2016. Inhibitory effect and cell damage on bacterial flora of fish caused by chitosan, nisin and sodium lactate. Int. J. Biol. Macromol., vol. 83, p. 396-402. https://doi.org/10.1016/j.ijbiomac.2015.11.033 PMid:26597566

Terentjeva, M., Eizenberga, I., Valcina, O., Novoslavskij, A., Strazdina, V., Berzins, A. 2015. Prevalence of Foodborne Pathogens in Freshwater Fish in Latvia. Journal of Food Protection, vol 78, no. 11, p. 2093-2098. https://doi.org/10.4315/0362-028X.JFP-15-121 PMid:26555535

Yang, X., Wu, Q., Zhang, J., Huang, J., Chen, L., Liu, S., Yu, S., Cai, S. 2015. Prevalence, enumeration, and characterization of Salmonella isolated from aquatic food products from retail markets in China. Food Control, vol. 57, p. 308-313. https://doi.org/10.1016/j.foodcont.2015.03.046

Downloads

Published

2016-07-05

How to Cite

Cwiková, O. . (2016). Microbiological evaluation of fish. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 407–412. https://doi.org/10.5219/617

Most read articles by the same author(s)