Phthalates in meat products in dependence on the fat content

Authors

  • Alžbeta Jarošová Mendel University, Faculty of Agronomy, Department of Food Technology, Zemědělská 1, 613 00 Brno
  • Soňa Bogdanovičová Mendel University, Faculty of Agronomy, Department of Food Technology, Zemědělská 1, 613 00 Brno

DOI:

https://doi.org/10.5219/621

Keywords:

phthalates, DBP, DEHP, package, migration, fat content

Abstract

The content of dibutylphthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in samples of packages intended for thermally processed meat products and release of phthalates from packages into meat products in dependence on the fat content were observed. 80 samples of packages were analyzed, 5 of them wereselected due to exceeding the specific migration limit. The raw meat was prepared, one type with the fat content of 10% and second one with the fat content of 50%. The both types of raw meat were analyzed for the content of DBP and DEHP and packed into chosen packages.The samples of meat products were thermally processed (70 ℃, 10 min in the core), stored until the expiration date at 4 °C and gradually analyzed after 1st, 7th, 14th, 21st and 28th day of storage. Determination of phthalates was carried out by high performance liquid chromatography (HPLC) in the Zorbax Eclipse C8column and by UV detection at a wavelength of 224 mm. The phthalate content in the raw meat was under the limit of detection. According to the EU Commission Regulation no. 10/2011 the specific migration limit of products intended for the contact with food for DEHP (max. 1.5 mg.kg-1of food stimulant and DBP max. 0.3 mg.kg-1 of food stimulant), wasexceeded already after first day of storage, in case of DBP in two samples with 10% of fat and after 7th day of storage in one sample. In the samples with 50% of fat, SML was exceeded after first day of storage in four samples and in one sample after 14th day of storage. Regarding DEHP in the samples with 10% of fat SML was exceeded after 1st day of storage in one sample and after 7th day of storage also in one sample and after 21st day of storage similarly in one sample. Four samples with 50% of fat had SML exceeded in case of DEHP already after 1st day of storage. By comparison of PAE migration depending on the fat content we concluded that leaching of PAE from a package into food was 2 - 21 times higher in samples with 50% of fat than in samples with 10% of fat. 

Downloads

Download data is not yet available.

References

Barros, H. D., Zamith, H. P. S., Bazílio, F. S., Carvalho, L. J., Abrantes, S. M. P. 2011. Identification of fatty foods with contamination possibilities by plasticizers when stored in PVC film packaging. Ciencia Tecnologia de Alimentos, vol. 31, no. 2, p. 547-552. https://doi.org/10.1590/S0101-20612011000200041

Casajuana, N., Lacorte, S., 2004. New methodology for the determination of phthalate esters, bisphenol A, bisphenol A diglycidyl ether, and nonylphenol in commercial whole milk samples. Journal of Agricultural and Food Chemistry, vol. 52, p. 2702-2707. https://doi.org/10.1021/jf040027s PMid:15186085

Castle, L., Gilbert, J., Eklund, T., 1990. Migration of plasticizer from poly(vinyl chloride) milk tubing. Food Additives and Contaminants, vol. 7, p. 591-596. https://doi.org/10.1080/02652039009373924 PMid:2253803

Commission Regulation No. 2011/10/EC of theCommisssion of the European Communities of 14 January 2011 relating to plastic materials and articles intended to come into contact with foodstuffs 2011; OJ L 12, p. 4-12.

Das, M. T., Ghosh, P., Thakur, I. S., 2014. Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ. Pollut., vol. 189, p. 118-125. https://doi.org/10.1016/j.envpol.2014.02.021 PMid:24657605

Fierens, T., Cornelis, C., Standaert, A., Sioen, I., Henauw, S., Holderbeke, M., 2014a. Modelling the environmental transfer of phthalates and polychlorinated dibenzo-p-dioxins and dibenzofurans into agricultural products: The EN-forc model. Environ. Res., vol. 133, p. 282-293. https://doi.org/10.1016/j.envres.2014.06.005 PMid:24981827

Fierens, T., Standaert, A., Cornelis, C., Sioen, I., Henauw, S., Willems, H., Bellemans, M., Maeyer, M., Holderbeke, M., 2014b. A semi-probabilistic modelling approach for the estimation of dietary exposure to phthalates in the Belgian adult population. Environ. Int., vol. 73, p. 117-127. ISSN 01604120. https://doi.org/10.1016/j.envint.2014.07.017 PMid:25113625

Heudorf, U., Mersch-Sundermann, V., Angerer, E. 2007. Phthalates: toxicology and exposure. International Journal of Hygiene and Environmental Health, vol. 210, no. 5, p. 623-634. https://doi.org/10.1016/j.ijheh.2007.07.011 PMid:17889607

Gonzáles-Castro, M. I., Olea-Serrano, M. F., Rivas-Velasco, A. M., Medina-Rivero, E., Ordoñez-Acevedo, L. G., León-Rodríguez, A., 2011. Phthalates and Bisphenols Migration in Mexican Food Cans and Plastic Food Containers. Bull. Environ. Contam. Toxicol., vol. 86, no. 6, p. 627-631. https://doi.org/10.1007/s00128-011-0266-3 PMid:21509467

Guo, Z., Wang, S., Wei, D., Wang, M., Zhang, H., Gai, P., Duan, J. 2010. Development and application of a method for analysis of phthalates in ham sausages by solid-phase extraction and gas chromatography-mass spectrometry. Meat Science, vol. 84, no. 3, p. 484-490. https://doi.org/10.1016/j.meatsci.2009.10.002 PMid:20374814

Jarošová, A., Gajdůšková, V., Raszyk, J., Ševela, K. 1998. Determination of phthalic acid esters (PAEs) in biological materials by HPLC. Czech Journal of Food Sciences, vol. 16, p. 122-130.

Jarošová, A., Gajdůšková, V., Raszyk, J., Ševela, K. 1999. Di-2-ethylhexyl phthalate and di-n-butyl phthalate in the tissues of pigs and broiler chicks after their oral administration. Veterinární medicína, vol. 44, p. 61-70.

Ji, Y., Wang, F., Zhang, L., Shan, CH., Bai, Z., Sun, Z., Liu, L., Shen, B., 2014. A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China. J. Hazard. Mater., vol. 279, p. 133-140. https://doi.org/10.1016/j.jhazmat.2014.06.055 PMid:25051237

Li, Y., Fei, F., Zhang, K., Chen, Q., Li, Y., 2012. Migration analysis of DEHP from Inner Liner of Beer Bottle Caps by HPLC. Procedia Environ. Sci., vol. 12, p. 17-21. ISSN 1878-0296. https://doi.org/10.1016/j.proenv.2012.01.241

Meng, X., Wang, Y., Xiang, N., Chen, L., Liu, Z., Wu, B., Dai, X., Zhan, Y., Xie, Z., Ebinghaus, R., 2014. Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: Implication for risk assessment of sludge applied to soil. Sci. Total Environ., vol. 476-477, p. 242-249. https://doi.org/10.1016/j.scitotenv.2014.01.007 PMid:24468498

Moreira, M. A., Andre, L. C., Cardeal, Z. D. 2015. Analysis of plasticiser migration to meat roasted in plastic bags by SPME-GC/MS. istry,vol. 1, no. 178, p. 195-200. https://doi.org/10.1016/j.foodchem.2015.01.078 PMid:25704701

Nanni, N., Fiselier, K., Grob, K., DI Pasquale, M., Fabrizi, L., Aureli, P., Coni, E., 2011. Contamination of vegetable oils marketed in Italy by phthalic acid esters. Food Control, vol. 22, no. 2, p. 209-214. https://doi.org/10.1016/j.foodcont.2010.05.022

Net, S., Delmont, A., Sempéré, R., Paluselli, A., Ouddane, B., 2015. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ., vol. 515-516, p. 162-180. https://doi.org/10.1016/j.scitotenv.2015.02.013 PMid:25723871

Selvaraj, K. K, Sundaramoorthy, G., Ravichandran, P. K., Girijan, G. K., Sampath, S., Ramaswamy, B. R., 2015. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environ. Geochem. Health, vol. 37, no. 1, p. 83-96. https://doi.org/10.1007/s10653-014-9632-5 PMid:25056812

Sharman, M., Read, W. A., Castle, L., Gilbert, J., 1994. Levels of di-(2-ethylhexyl) phthalate and total phthalate esters in milk, cream, butter and cheese. Food Additives and Contaminants, vol. 11, p. 375-385. https://doi.org/10.1080/02652039409374236 PMid:7926171

Shuangling, Z., Kangquan, G., 2009. Migration amount of Di-2-ethylhexyl phthalate from food-grade PVC film into meat at three temperatures. Transactions of the Chinese Society of Agricultural Engineering, vol. 25, p. 291-293.

Schiedek, T., 1995. Impact of plasticizers (phthalic acid esters) on soil and groundwater quality, p. 149-156. In: Groundwater Quality: Remediation and Protection (Proceedings of the Prague Conference, May 1995). IAHS Publ. no. 225, 1995.

Tsumara, Y., Ishimitsu, S., Kaihara, A., Yoshii, K., Nakamura, Y., Tonogai, Y., 2001. Di(2-ethylhexyl) phthalate contamination of retail packed lunches caused by PVC gloves used in the preparation of foods. Food additives and contaminants, vol. 18, p- 569-579. PMid:11407756

Wang, X. K., Guo, W. L., Meng, P. R., Gan, J. A., 2002. Analysis of Phthalate Esters in Air, Soil and Plants in Plastic Film Greenhouse. Chin. Chem. Lett., vol. 13, no. 6, p. 557-560.

Wang, S., Yang, W., Shi, M., Sun, X., Pang, W., Wang, G. 2013. GC-MS Assisted with Chemometric Methods Applied for Investigation of Migration Behavior of Phthalate Plasticizers in Fatty Foods Simulant. Chromatographia, vol. 76, no. 9-10, p. 529-534. https://doi.org/10.1007/s10337-013-2410-1

Wang, J., Bo, L., Li, L., Wang, D., Chen, G., Christie, P., Teng, Y., 2014. Occurrence of phthalate esters in river sediments in areas with different land use patterns. Sci. Total Environ., vol. 500-501, p. 113-119. https://doi.org/10.1016/j.scitotenv.2014.08.092 PMid:25217750

Wang, J., Chen, G. C., Christie, P., Zhang, M. Y., Luo, Y. M., Teng, Y. 2015. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, vol. 1, no. 523, p. 129-137. https://doi.org/10.1016/j.scitotenv.2015.02.101 PMid:25863503

Yang, J., Li, Y., Wang, Y., Ruan, J., Zhang, J., Sun, CH., 2015. Recent advances in analysis of phthalate esters in foods. Trends Anal. Chem., vol. 72, p. 10-26. https://doi.org/10.1016/j.trac.2015.03.018

Zhang, Z., He, G., Peng, X., Lu, L., 2014. Distribution and sources of phthalate esters in the topsoils of Beijing, China. Environ. Geochem. Health, vol. 36, no. 3, p. 505-515. ISSN 0269-4042. https://doi.org/10.1007/s10653-013-9577-0 PMid:24203261

Downloads

Published

2016-07-05

How to Cite

Jarošová, A. ., & Bogdanovičová, S. . (2016). Phthalates in meat products in dependence on the fat content. Potravinarstvo Slovak Journal of Food Sciences, 10(1), 378–383. https://doi.org/10.5219/621

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.