The effect of calcium and magnesium supplementation on performance and bone strength of broiler chickens

Authors

  • Filip Karásek Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno
  • Hana Štenclová Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno
  • Ondřej Šťastní­k Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno
  • Eva Mrkvicová Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno
  • Leoš Pavlata Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno
  • Šárka Nedomová Mendel University in Brno, Faculty of Agronomy, Department of Food Technology, Zemedelska 1, 613 00 Brno
  • Ladislav Zeman Mendel University in Brno, Faculty of Agronomy, Department of Animal Nutrition and Forage Production, Zemědělská 1, 61300 Brno

DOI:

https://doi.org/10.5219/710

Keywords:

poultry nutrition, Ross 308, liver, CaCO3, MgSO4

Abstract

Aim of the experiment was evaluation of the effect of reduced calcium and magnesium content in the broiler chickens diet on its parameters of fattening, bone strength and calcium and magnesium content in liver. The trial was performed with cockerels of Ross 308 hybrid (n = 160) which were fattened in cage batteries from day 11th to 36th day of age. Cockerels were divided into 4 groups (differ in various intake levels of calcium and magnesium) in four replications. The maize-wheat-soybean basal diet contained 2.33 g Ca and 1.58 g Mg per kilogram. Calcium was added by CaCO3 and magnesium by MgSO4. Control group (C) received feed mixture with added CaCO3 in dose of 19.49 g.kg-1 and 0.41 g.kg-1 of MgSO4. Three experimental groups contain added CaCO3 in dose of 11.83 g.kg-1 and 0 g.kg-1 MgSO(group Exp1); CaCO3 11.83 g.kg-1 and 0.41 g.kg-1 MgSO(group Exp2); CaCO3 19.49 g.kg-1 and 0 g.kg-1 MgSO4 (group Exp3), respectively. The feed consumption was daily monitored and the cockerels were weighed twice a week. At the end of the study the experimental animals were weighted and slaughtered by decapitation. The weight of carcasses, liver and proportion of breast and thigh muscle was determined in the selected chickens (n = 24). The atomic absorption spectrometry was used for Ca and Mg evaluation in liver tissues. Bone strength parameter was measured at the femur bone. The statistically significant differences (>0.05) were not detected between control and experimental groups in the case of studied parameters of fattening, bone strength and calcium and magnesium content in the chicken´s liver. Based on the obtained results it could be concluded the reduction of determined elements in the chicken diet did not deteriorate parameters of yield, elements content in liver tissue as well as the bone strength of broiler chickens.

Downloads

Download data is not yet available.

References

Akter, M., Graham, H., Iji, P. A. 2016. Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase. British Poultry Science, vol. 57, no. 6, p. 779-809. https://doi.org/10.1080/00071668.2016.1216943

Askari, M., Khatibjoo, A., Taherpoor, K., Fattahnia, F., Souri, H. 2015. Effects of Calcium, Phosphorus and Zinc in Wheat ‐ Based Diets b on Broiler Chickens' Performance, Immunity and Bone Parameters. Iranian Journal of Applied Animal Science, vol. 5, no. 3, p. 723-730.

Aviagen Group. 2014. Technological procedure for broiler Ross [online]. Aviagen Group [cit. 2016-11-15]. Available at: http://en.aviagen.com/ross-308.

Bo, S., Pisu, E. 2008. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Current Opinion in Lipidology, vol. 19, no. 1, p. 50-56. https://doi.org/10.1097/MOL.0b013e3282f33ccc

Guerrero-Romero, F., Rodriguez-Moran, M. 2002. Low serum magnesium levels and metabolic syndrome. Acta Diabetologica, vol. 39, no. 4, p. 209-213. https://doi.org/10.1007/s005920200036

Horký, P. 2015. Effect of selenium on its content in milk and performance of dairy cows in ecological farming. Potravinarstvo, vol. 9, no. 1, p. 324-329. https://doi.org/10.5219/492

Horký, P. 2014. Influence of increased dietary selenium on glutathione peroxidase activity and glutathione concentration in erythrocytes of lactating sows. Annals of Animal Science, vol. 14, no. 4, p. 869-882. https://doi.org/10.2478/aoas-2014-0056

Horký, P., Jančíková, P., Sochor, J., Hynek, D., Chavis, G J., Ruttkay-Nedecký, B., Cernei, N., Zítka, O., Zeman, L., Adam, V., Kizek, R. 2012. Effect of organic and inorganic form of selenium on antioxidant status of breeding boars ejaculate revealed by electrochemistry. International Journal of Electrochemical Science, vol. 7, no. 10, p. 9643-9657.

Horky, P., Sochor, J., Skladanka, J., Klusonova, I., Nevrkla, P. 2016. Effect of Selenium, Vitamin E and C on Antioxidant Potential and Quality of Boar Ejaculate. Journal of Animal and Feed Sciences, vol. 25, no. 1, p. 29-36. https://doi.org/10.22358/jafs/65584/2016

Hurwitz, S., Plavnik, I., Shapiro, A., Wax, E., Talpaz, H., Bar, A. 1995. Calcium metabolism and requirements of chickens are affected by growth. Journal Nutrition, vol. 125, no. 10, p. 2679-2686. PMid:7562105

Chakraborti, S., Chakraborti, T., Mandal, M., Mandal, A., Das, S., Ghosh. S. 2002. Protective role of magnesium in cardiovascular diseases: a review. Molecular and Cellular Biochemistry, vol. 238, no. 1, p. 163-79. https://doi.org/10.1023/A:1019998702946 PMid:12349904

Liu, Y., Guo, Y., Wang, Z., Nie, W. 2007. Effects of source and level of magnesium on catalase activity and its gene expression in livers of broiler chickens. Archives of Animal Nutrition, vol. 61, no. 4, p. 292-300. https://doi.org/10.1080/17450390701432019

Majewska, D., Szczerbińska, D., Ligocki, M., Bucław, M., Sammel, A., Tarasewicz, Z., Romaniszyn, K., Majewski J. 2016. Comparison of the mineral and fatty acid profiles of ostrich, turkey and broiler chicken livers. British Poultry Science, vol. 57, no. 2, p. 193-200. https://doi.org/10.1080/00071668.2016.1154136

Nevrkla, P., Čechová, M., Hadaš, Z. 2014. Use of repopulation for optimizing sow reproductive performance and piglet loss. Acta Veterinaria Brno, vol. 83, no. 4, p. 321-325. https://doi.org/10.2754/avb201483040321

Nevrkla, P., Čechová, M., Wasilewski, P. D., Michalska, G., Nowachowicz, J. 2016. Carcass traits and meat quality of pigs fed on fodder supplemented with sunflower oil or conjugated linoleic acid. Journal of Central European agriculture, vol. 17, no. 3, p. 598-608. https://doi.org/10.5513/JCEA01/17.3.1749

Mcdonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., Wilkinson, R. G. 2011. Minerals. In Mcdonald, P. et al. Animal nutrition. Wisconsin-Madison : Longman Scientific and Technical, p. 103-137, ISBN-9781408204238.

Peters, J. C., Mahan, D. C. 2008. Effects of dietary organic and inorganic trace mineral levels on sow productive performance and daily mineral intakes over six parities. Journal of Animal Science, vol. 86, no. 9, p. 2247-2260. https://doi.org/10.2527/jas.2007-0431

Ruttanavut, J., Yamauchi, K. 2010. Growth performance and histological alterations of intestinal villi in broilers fed dietary mixed minerals. Asian Journal of Animal Sciences, vol. 4, no. 3, p. 96-106. https://doi.org/10.3923/ajas.2010.96.106

Rama Rao, S. V., Raju, M. V. L. N., Reddy, M. R., Pavani, P. 2006. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers. Animal Feed Science and Technology, vol. 131, no. 1, p. 135-150. https://doi.org/10.1016/j.anifeedsci.2006.02.011

Sahin, K., Onderci, M., Sahin, N., Gulcu, F., Yildiz, N., Avci, M., Kucuk, O. 2006. Responses of quail to dietary vitamin E and zinc picolinate at different environmental temperatures. Animal Feed Science Technology, vol. 129, no. 1, p. 39-48. https://doi.org/10.1016/j.anifeedsci.2005.11.009

Salmanzadeh, M., Ebrahimnezhad, Y., Shahryar, H. A., Beheshti, R. 2012. The effects of in ovo injection of glucose and magnesium in broiler breeder eggs on hatching traits, performance, carcass characteristics and blood parameters of broiler chickens. Archiv für Geflügelkunde, vol. 76, no. 4, p. 277-281.

Shafey, T. M., Mc Donald, M. W., Pym, R. A. 1990. Effects of dietary calcium, available phosphorus and Vitamin D on growth rate, food utilization, plasma and bone constituents and calcium and phosphorus retention of commercial broiler strains. British Poultry Science, vol. 31, no. 3, p. 587-602. https://doi.org/10.1080/00071669008417290 PMid:2245353

Singh, A., Walk, C. L., Ghosh, T. K., Bedford, M. R., Haldar, S. 2013. Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets. British Poultry Science, vol. 54, no. 2, p. 206-15. https://doi.org/10.1080/00071668.2013.775403

Song, Y., Ridker, P. M., Manson, J. E., Cook, N. R., Bruing, J. E., Liu, S. 2005. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care, vol. 28, no. 6, p. 1438-1444. https://doi.org/10.2337/diacare.28.6.1438 PMid:15920065

Swiatkiewicz, S., Koreleski, J., Arczewska-Wloek, A. 2011. Effect of inulin and oligofructose on performance and bone characteristics of broiler chickens fed on diets with different concentrations of calcium and phosphorus. British Poultry Science, vol. 52, no. 4, p. 483-491. https://doi.org/10.1080/00071668.2011.602665

Štenclová, H., Karásek, F., Šťastník, O., Zeman, L., Mrkvicová, E., Pavlata, L. 2016. The effect of reduced zinc levels on performance parameters of broiler chickens. Potravinarstvo, vol. 10, no. 1, p. 272-275. https://doi.org/10.5219/580

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, p. 44-84. https://doi.org/10.1016/j.biocel.2006.07.001

Van der Hoeven-Hangoor, E., Van de Linde, I. B., Paton, N. D., Verstegen, M. W. A, Hendriks, W. H. 2013. Effect of different magnesium sources on digesta and excreta moisture content and production performance in broiler chickens. Poultry Science, vol. 92, no. 2, p. 382-391. https://doi.org/10.3382/ps.2012-02404

Yang, Y., Gao, M., Nie, W., Yuan, J., Zhang, B., Wang, Z., Wu, Z. 2012. Dietary magnesium sulfate supplementation protects heat stress-induced oxidative damage by restoring the activities of antioxidative enzymes in broilers. Biological Trace Elementary Research, vol. 146, no. 1, p. 53-58. https://doi.org/10.1007/s12011-011-9210-y

Zelenka J., Heger J., Zeman L. 2007. Recommended nutrient content in poultry diets and nutritive value of feeds for poultry (in Czech). Brno : MZLU. 77 p. ISBN 978-80-7375-091-6.

Downloads

Published

2017-03-15

How to Cite

Karásek, F. ., Štenclová, H. ., Šťastní­k, O. ., Mrkvicová, E. ., Pavlata, L. ., Nedomová, Šárka ., & Zeman, L. . (2017). The effect of calcium and magnesium supplementation on performance and bone strength of broiler chickens. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 120–125. https://doi.org/10.5219/710

Most read articles by the same author(s)

1 2 3 > >>