Growth of microorganisms in the pre-fermentation tanks in the production of ethanol


  • Viera Michalová Slovak University of Agriculture, Faculty of Biotechnology and Food Science, Department of Microbiology, Trieda Andreja Hlinku 2, 949 76 Nitra
  • Dana Tančinová Department of microbiology, Faculty of biotechnology and food sciences. Slovak University of Agriculture in Nitra



microbiota, Saccharomyces cerevisiae, yeasts, generation


Our research was carried out to determine the plate count with a special observation Saccharomyces cerevisiae in the pre-fermenters cereal grains using the classical microscopic method. The cell counts were performed in the Bürker chamber. We followed changes in the plate count, number of Saccharomyces cerevisiae and changes during the yeast propagation in the mash. The mash would present only cultivated yeast Saccharomyces cerevisiae but may occur in a small number of other microorganism's types. Samples were taken during the propagation process in distillery factories. During this period, 30 samples of corn mash were examined. Samples were collected from two tanks during the fifteen generations. The total number of Saccharomyces cerevisiae was reduced and we got a number of unwanted microbiota. The statistical evaluation demonstrated that the growth of unwanted microbiota is directly related to the increase in the propagation of generation in corn mash. The maximum number of yeast cells was found in the twelfth generation 3.052 x 108 mL in the propagation tank. The total number of microorganisms in this generation was 3.149 x 108 mL and yeasts represent 96.92% of the total microbiota. In the sample B, 95.62% were Saccharomyces cerevisiae during the fifteenth generation. Our results showed that the optimal exchange of the yeast is in 15th generation. Subsequently, repeat the whole process but now with new yeast. These results confirmed our understanding of the relationship between Saccharomyces cerevisiae and contamination during the ethanol fermentation.


Download data is not yet available.


Akinosho, H., Rydzak, T., Borole, A., Ragauskas, A., Close, D. 2015. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology, vol. 24, no. 10, p. 2156-2174. PMid:26423392

Amillare, E., Aceves-Lara, C. A., Uribellarrea, J. L., Alfenore, S., Guillouet, S. E. 2012. Dynamic model of temperature impact on cell viability and major product formation during feg-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae. Bioresource Technology, vol. 117, p. 242-250. PMid:22617033

Casalone, E., Barberio, C., Cappellini, L., Polsinelli, M. 2005. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology. Research in microbiology, vol. 156, no. 2, p. 191-200. PMid:15748984

Čerňanský, S., Khun, M. 2011. Utilization of technical microbiology in the fermentation and food industry (Využitie technickej mikrobiológie v kvasnom a potravinárskom priemysle). 1st ed. Bratislava, Slovakia : Univerzita Komenského. 250 p. ISBN 978-80-223-3135-7.

Demeke, M. M., Dietz, H., Li, Y., Foulquie.Moreno, M. R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B. M., Liden, G., Dumortier, F., Verplaetse, A., Boles, E., Thevelein, J. M. 2013. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocelluloses hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, vol. 6, no. 1, p. 89. PMid:23800147

Dong, S. J., Lin, X. H., Li, H. 2015. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. The International Journal of Biochemistry & Cell Biology, vol. 68, p. 33-41. PMid:26279142

Dong, S. J., Yi, CH. F., Li, H. 2015. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. The International Journal of Biochemistry &Cell Biology, vol. 69, p. 196-203. PMid:26515124

Furdíková, K., Malík, F. 2016. Methods of conducting alcohol fermentation (Spôsoby vedenia alkoholovej fermentácie). Agroporadenstvo.

Ginley, D. S., Cahen, D. 2012. Fundamentals of Material for Energy and Environmental Sustainability. UK : Cambridge University Press. 754 p. ISBN 1139502689, 9781139502689.

Kasavi, C., Finore, I., Lama, L., Nicolaus, B., Oliver, S. G, Oner, E. T., Kirdar, B. 2012. Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass and Bioenergy, vol. 45, p. 230-238.

Khongsay, N., Laopaiboon, L., Laopaiboon, P. 2010. Growth and batch ethanol fermentation of Saccharomyces on sweet sorghum stem juice under normal and very high gravity conditions. Biotechnology, vol. 9, no. 1, p. 9-16.

Kumar, V., Sinha, A. K., Makkar, H. P. S., Becker, K. 2010. Dietary roles of phytate and phytase in human nutrition : A review. Food chemistry, vol. 120, no. 4, p. 945-959.

Manikandan, K., Viruthagiri, T. 2010. Kinetic and optimization studies on ethanol production from corn flour. International Journal of Chemical and Biological Engineering, vol. 3, no. 2, p. 65-69.

Mikulski, D., Kłosowski, G., Rolbiecka, A. 2014. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process. Applied Biochemistry and Biotechnology, vol. 174, no. 4, p. 1455-1470. PMid:25119551

Muruaga, M. L., Carvalho, K. G., Domínquez, J. M., de Souza Oliveira, R. P., Perotti, N. 2016. Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor. Renewable Energy, vol. 85, p. 649-656.

MycoBank Database, 2016. Fungal Databases, Nomenclature and Species banks [online] s.a. [cit. 2017-02-01] Available at:

Paschos, T., Xiros, Ch., Christakopoulos, P. 2015. Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products, vol. 76, p. 793-802.

Pelikán, M., Sáková, L. 2001. Quality and processing of plant products (Jakost a zpracovaní rostlinných produktů). České Budějovice, Czech Republic : ZF JČU. 233 p. ISBN 80-7040-502-3.

Rebroš, M., Rosenberg, M., Krištofíková, Ľ., Stloukal, R. 2005. Microbial production of fuel ethanol: bacteria or yeasts? (Mikrobiálay produkcia palivového etanolu: baktérie alebo kvasinky?). Chemické listy, vol. 99, no. 402-409.

Rob, O., Hrabě, J. 2009. Non-alcoholic and alcoholic beverages (Nealkoholické a alkoholické nápoje). 1st ed. Zlín, Czech Republic : Univerzita Tomáše Bati. 129 p. ISBN 978-80-7318-748-4.

Sun, X., Liu, L., Zhao, Y., Ma, T., Zhao, F., Huang, W., Zhan, J. 2016. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation. Food Chemistry, vol. 192, p. 43-52. PMid:26304318

Veselá, M. 2004. Practice in general microbiology (Praktikum z obecné mikrobiologie). Brno, Czech Republic : FCH VUT. 3rd ed. 99 p. ISBN 80-214-2567-9.

Wang, Y., Zhang, S., Liu, H., Zhang, L., Yi, Ch., Li, H. 2015. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Journal of Basic Microbiology, vol. 55, no. 12, p. 1-10. PMid:26265555




How to Cite

Michalová, V. ., & Tančinová, D. . (2017). Growth of microorganisms in the pre-fermentation tanks in the production of ethanol. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 529–534.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.