Molecular variability of oat based on gene specific markers

Authors

  • Želmí­ra Balážová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Zdenka Gálová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Martin Vivodí­k Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Lenka Petrovičová Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Radomí­ra Hornyák Gregáňová Slovak University of Agriculture, Faculty of Economics and Management, Department of Mathematics, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia

DOI:

https://doi.org/10.5219/774

Keywords:

Avena sativa L., SCoT technique, genetic diversity, polymorphism, dendrogramiversity, dendrogram

Abstract

Oat (Avena sativa L.is a grass planted as a cereal cropCultivation of oat is increasing in the recent years because of its good nutrition value. The aim of our study was to analyze genetic variability of oat accessions based on SCoT markers. Eighteen primers were used to study polymorfism of 8 oat genotypes. All 18 primers produced polymorphic and reproducible data. Altogether 153 different fragments were amplified of which 67 were polymorphic with an average number of 3.72 polymorphic fragments per genotype. The number of polymorphic fragments ranged from one (SCoT9, SCoT62) to nine (SCoT40). The percentage of polymorphic bands ranged from 14.29% (SCoT9) to 60% (SCoT59) with an average of 41.62%. Genetic polymorphism was characterized based on diversity index (DI), probability of identity (PI) and polymorphic information content (PIC). The diversity index of the tested SCoT markers ranged from 0 (SCoT9, SCoT62) to 0.878 (SCoT40) with an average of 0.574. The polymorphic information content ranged from 0 (SCoT9, SCoT62) to 0.876 (SCoT40) with an average of 0.524. Dendrogram based on hierarchical cluster analysis using UPGMA algorithm grouped genotypes into two main clusters. Two genotypes, Taiko and Vok were genetically the closest. Results showed the utility of SCoT markers for estimation of genetic diversity of oat genotypes leading to genotype identification.

Downloads

Download data is not yet available.

References

Al-Qurainy, F., Khan, S., Nadeem, M., Tarroum, M. 2015. SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. Pakistan Journal of Botany, vol. 47, no. 2, p. 637-640.

Amirmoradi, B., Talebi, R., Karami, E. 2012. Comparison of genetic variation anddifferentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR, and ISSR markers. Plant Systematics and Evolution, vol. 298, no. 9, p. 1679-1688. https://doi.org/10.1007/s00606-012-0669-6

Baohong, G., Zhou, X., Murphy, J. P. 2003. Genetic variation within Chinese and Western cultivated oat accessions. Cereal Research Communications, vol. 31, no. 3-4, p. 339-346.

Boczkowska, M., Tarczyk, E. 2013. Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet Resources and Crop Evolution, vol. 60, no. 7, p. 2157. https://doi.org/10.1007/s10722-013-9984-1

Collard, B. C. Y., Mackill, D. J. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Report, vol. 27, p. 86-93. https://doi.org/10.1007/s11105-008-0060-5

Daou, C., Zhang, H. 2012. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Comprehensive Reviews in Food Science and Food Safety, vol. 11, no. 4, p. 355-365. https://doi.org/10.1111/j.1541-4337.2012.00189.x

Fang-Yong, Ch., Ji-Honga, L. 2014. Germplasm genetic diversity of Myrica rubra in Zhejiang Province studied using inter-primer binding site and start codon-targetedpolymorphism markers. Scientia Horticulturae, vol. 170, p. 169-175. https://doi.org/10.1016/j.scienta.2014.03.010

Fu, Y. B., Peterson, G. W., Scoles, G., Rossnagel, B., Schoen, D. J., Richards, K. W. 2003. Allelic diversity changes in 96 Canadian oat varieties released from 1886 to 2001. Crop Science, vol. 43, p. 1989-1995. https://doi.org/10.2135/cropsci2003.1989

Gajera, H. P., Bambharolia, R. P., Domadiya, R. K., Patel, S. V., Golakiya, B. A. 2014. Molecular characterization and genetic variability studies associated with fruit quality of indigenous mango (Mangifera indica L.) cultivars. Plant Systematics and Evolution, vol. 300, p. 1011-1020. https://doi.org/10.1007/s00606-013-0939-y

Gálová, Z., Palenčárová, E., Chňapek, M., Balážová, Ž. 2012. Využitie obilnín, pseudoobilnín a strukovín v bezlepkovej diete (Utilization of cereals, pseudobultures and legumes in gluten-free diet). 1st ed. Nitra, Slovakia : Slovenská poľnohospodárska univerzita, p. 38-40. ISBN 978-80-552-0826-8.

Gao, Y. H., Zhu, Y. Q., Tong, Z. K., Xu, Z. Y., Jiang, X. F., Huang, Ch. H. 2014. Analysis of genetic diversity and relationships among genus Lycoris based on start codon targeted (SCoT) marker. Biochemical Systematics and Ecology, vol. 57, p. 221-226. https://doi.org/10.1016/j.bse.2014.08.002

Gorji, A. M., Poczai, P., Polgar, Z., Taller, J. 2011. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research, vol. 88, no. 3, p. 226-237. https://doi.org/10.1007/s12230-011-9187-2

Gupta, P. K., Chyi, Y. S., Romero-Severson, J., Owen, J. L. 1994. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics, vol. 89, no. 7-8, p. 998-1006. PMid:24178116

Hajibarat, Z., Saidi, A. Hajibarat, Z., Talebi, R. 2015. Characterization of genetic diversity in chickpea using SSR. Physiology and Molecular Biology of Plants, vol. 21, no. 3, p. 365-373. https://doi.org/10.1007/s12298-015-0306-2 PMid:26261401

Huang, L., Huang, X., Yan, H., Yin, G., Zhang, X., Tian, Y., Zhang, Y., Jiang, X., Yan, Y., Ma, X., Peng, Y., Zhou, J., Nie, G. 2014. Constructing DNA fingerprinting of Hemarthria cultivars using EST-SSR and SCoT markers. Genetic Resources and Crop Evolution, vol. 61, p. 1047-1055. https://doi.org/10.1007/s10722-014-0107-4

Jiang, L. F., Qi, X., Zhang, X. Q., Huang, L. K., Ma, X., Xie, W. G. 2014. Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers. Genetic and Molecular Research, vol. 13, no. 2, p. 4406-4418. https://doi.org/10.4238/2014.June.11.4 PMid:25036346

Kallamadi, P. R., Ganga, R., Nadigatlab, V. P. R., Mulpurib, S. 2015. Molecular diversity in castor (Ricinus communis L.). Industrial Crops and Products, vol. 66, p. 271-281. https://doi.org/10.1016/j.indcrop.2014.12.061

Luo, C., He, X. H., Chen, H., Ou, S. J., Gao, M. P. 2010. 2010. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers. Biochemical Systematics and Ecology, vol. 38, no. 6, p. 1176-1184. https://doi.org/10.1016/j.bse.2010.11.004

Mahjbi, A., Baraket, G., Oueslati, A., Salhi-Hannachi, A. 2015. Start Codon Targeted (SCoT) markers provide new insights into the genetic diversity analysis and characterization of Tunisian Citrus species. Biochemical Systematics and Ecology, vol. 61, p. 390-398. https://doi.org/10.1016/j.bse.2015.07.017

Paetkau, D., Calvert, W., Stirling, I., Strobeck, C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, vol. 4, no. 3, p. 347-354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

PMid:7663752

Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. P., Hyvonen, J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods, vol. 9, no. 1, p. 6. https://doi.org/10.1186/1746-4811-9-6 PMid:23406322

Que, Y., Pan, Y., Lu, Y., Yang, C., Yang, Y., Huang, N., Xu, L. 2014. Genetic Analysis of Diversity within a Chinese Local Sugarcane Germplasm Based on Start Codon Targeted Polymorphism. BioMed Research International, vol. 2014, p. 1-10. https://doi.org/10.1155/2014/468375 PMid:24779012

Rajesh, M. K., Sabana, A. A., Rachana, K. E., Rahman, S., Jerard, B. A., Karun, A. 2015. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Biotech, vol. 5, no. 6, p. 999-1006.

Satya, P., Karana, M., Jana, S., Mitraa, S., Sharma, A., Karmakar, P. G., Rayb, D. P. 2015. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene, vol. 3, p. 62-70. https://doi.org/10.1016/j.mgene.2015.01.003 PMid:25750860

Shahlaei, A., Torabi, S., Khosroshahli, M. 2014. Efficiacy of SCoT and ISSR marekers in assesment of tomato (Lycopersicum esculentum Mill.) genetic diversity. International Journal of Biosciences, vol. 5, no. 2, p. 14-22. https://doi.org/10.12692/ijb/5.2.14-22

Tsaballa, A., Ganopoluos, I., Timplalexi, A., Aliki, X., Bosmali, I., Irini, N. O., Athanasios, T. Madesis, P. 2015. Molecular characterization of Greek pepper (Capsicum annuum L) landraces with neutral (ISSR) and gene-based (SCoT and EST-SSR) molecular markers. Biochemical Systematics and Ecology, vol. 59, p. 256-263. https://doi.org/10.1016/j.bse.2015.02.005

Vivodík, M., Gálová, Z., Balážová, Ž., Petrovičová, L. 2016. Start codon targeted (scot) polymorphism reveals genetic diversity in European old maize (Zea mays L.) genotypes. Potravinarstvo, vol. 10, no. 1, p. 563-569. https://doi.org/10.5219/660

Weber, J. L. 1990. Informativeveness of human (dC-dA)n x (dG-dT)n polymorphism. Genomics, vol. 7, no. 4, p. 524-530. https://doi.org/10.1016/0888-7543(90)90195-Z

Weir, B. S. 1990. Genetic data analysis. Sunderland, Massachusetts : Sinauer Associated, 445 p, ISBN 0 87893 871 00 87893.

Xiong, F., Zhong, R., Han, Z., Jiang, J., He, L., Zhuang, W., Tang, R. 2011. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports, vol. 38, no. 5, p. 3487-3494. https://doi.org/10.1007/s11033-010-0459-6 PMid:21104441

Zhang, J., Xie, W., Wang, Y., Zhao, X. 2015. Potential of Start Codon Targeted (SCoT) Markers to Estimate Genetic Diversity and Relationships among Chinese Elymus sibiricus Accessions. Molecules, vol. 20, no. 4, p. 5987-6001. https://doi.org/10.3390/molecules20045987

PMid:25853316

Downloads

Published

2017-05-16

How to Cite

Balážová, Želmí­ra ., Gálová, Z. ., Vivodí­k, M. ., Petrovičová, L. ., & Gregáňová, R. H. (2017). Molecular variability of oat based on gene specific markers. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 332–337. https://doi.org/10.5219/774

Most read articles by the same author(s)

1 2 > >>