Tibia mineralization of chickens determined to meat production using a microbial phytase


  • Mária Angelovičová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Martin Mellen Klas s.r.o., Osloboditeľov 66, 990 01 Veľký Krtí­š
  • Peter Zajác Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Jozef Čapla Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Marek Angelovič Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Machines and Production Systems, Tr. A. Hlinku 2, 949 76 Nitra




broiler, microbial phytase, additive, phosphorus, tibia, mineralization


The target of the research was 6-phytase of microbial origin. It was used in feed mixtures for chickens determined to meat production. Its effect has been studied in relation to the tibia mineralization by calcium, phosphorus and magnesium. 6-phytase is a product of Aspergillus oryzae. That was obtained by means of biotechnological processes of production of commercially available enzymes. It was incorporated in the feed mixtures 0.1%. In a 38-day feeding trial, 300 one-day-old, as hatched, Cobb 500 chickens determined to meat production (100 birds per group) were fed on one concentrations of dietary non-phytate phosphorus (2.32, 2.31 g.kg-1, respectively and supplemental microbial phytase (0 and 500   FTU.kg-1 feed mixtures). Control group was used to compare the results and control feed mixtures contained 4.5 g.kg-1 without microbial phytase. At days 40 it was selected 6 birds in every group, which were slaughter in accordance with the principles of welfare. Left tibias of every bird were used to determination of calcium, phosphorus and magnesium contents. According to in vivo, it was found that the addition of microbial phytase to reduced dietary non-phytate phosphorus increased concentrations of calcium (Ca), phosphorus (P) and magnesium (Mg) in tibia. The differences among groups were statistically significant (p <0.05). It was concluded that reducing of dietary non-phytate phosphorus on the 2.32, 2.31 g.kg-1, respectively, by monocalcium phosphate and microbial phytase supplementation in feed mixtures facilitated tibia mineralization at chicken determined to meat production.


Download data is not yet available.


Ahmad, T., Rassol, S., Sarwar, M., Haq, A., Hasan, Z. 2000. Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chicken. Animal Feed Science and Technology, vol. 83, no. 2, p. 103-114. https://doi.org/10.1016/S0377-8401(99)00122-4

Angel, R., Saylor, W., Dhandu, A. S., Powers, W., Applegate, T. J. 2005. Effects of dietary phosphorus, phytase and 25-hydroxycholecalciferol on performance of broiler chickens grown on floor pens. Poultry Science, vol. 84, no. 7, p. 1031-1044. https://doi.org/10.1093/ps/84.7.1031 PMid:16050120

Angelovičová, M. 1999. Nutrition and feeding of high-yield poultry (Výživa a kŕmenie vysokoúžitkovej hydiny). Nitra : Slovak university of agriculture. 85 p. ISBN 80-7137-60.

Aureli, R., Umar Faruk, M., Cechova, I., Pedersen, P. B., Elvig-Joergensen, S. G., Fru, F., Broz, J. 2011. The efficacy of a novel microbial 6-phytase expressed in Aspergillus oryzae on the performance and phosphorus utilization in broiler chickens. International Journal of Poultry Science, vol. 10, no. 2, p. 160-168. https://doi.org/10.3923/ijps.2011.160.168

Biehl, R. R., Baker, D. H. 1996. Efficacy of supplemental 1 alpha-hydroxycholesterol and microbial phytase for young pigs fed phosphorus- or amino acid-deficient cornsoybean meal diets. Journal of Animal Science, vol. 74, p. 2960-2966. https://doi.org/10.2527/1996.74122960x PMid:8994910

Böhm, K., Herter, T., Müller, J. J., Borriss, R., Heinemann, U. 2010. Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. The FEBS Journal, vol. 277, no. 5, p. 1284-1296. https://doi.org/10.1111/j.1742-4658.2010.07559.x PMid:20392204

Brenes, A., Viveros, A., Arija, I., Centeno, C., Pizarro, M., Bravo, C. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology, vol. 110, no. 1-4, pp. 201-219. https://doi.org/10.1016/S0377-8401(03)00207-4

Brož, J., Oldale, P., Perrin-Voltz, A. H., Rychen, G., Schulze, J., Simoes Nunes, C. 1994. Effects of supplemental phytase on performance and phosphorus utilization in broiler chickens fed a low phosphorus diet without addition of inorganic phosphates. British Poultry Science, vol. 35, no. 2, p. 273-280. https://doi.org/10.1080/00071669408417691 PMid:8062110

Catalá-Gregori, P., García, V., Hernández, F., Madrid, J., Cerón, J. J. 2006. Response of broilers to feeding low-calcium and phosphorus diets plus phytase under different environmental conditions: body weight and tibiotarsus mineralization. Poultry Science, vol. 85, 11, p. 1923-1931. https://doi.org/10.1093/ps/85.11.1923 PMid:17032825

Christensen, L., Bech, L., Ohman, A., Pettersson, D. 1997. Development, roduction and performance of microbial phytases. In Proceedings 11th European symposium on poultry nutrition. Faaborg, Denmark, p. 203-210.

Chu, H. M., Guo, R. T., Lin, T. W., Chou, C. C., Shr, H. L., Lai, H. L., Tang, T. Y., Cheng, K. J., Selinger, B. L., Wang, A. H. 2004. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure, vol. 12, no. 11, p. 2015-2024. https://doi.org/10.1016/j.str.2004.08.010 PMid:15530366

Classen, H. I., Scott, T. A., Irish, G. G., Huck, P., Swift, P. Bedford, M. R. 1995. The relationship of chemical and physical measurements to the apparent metabolisable energy (AME) of wheat when fed to broiler chickens with and without a wheat enzyme source. In Proceedings of the 2nd European Symposium on Feed Enzymes. Antalya, Turkey, p. 65-69.

Dersjant-Li, Y., Awati, A., Schulze, H., Partridge, G. 2015. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Sciience of Food and Agriculture, vol. 95, no. 5, p. 878-896. https://doi.org/10.1002/jsfa.6998 PMid:25382707

Dilger, R. N., Onyango, E. M., Sands, J. S., Adeola, O. 2004. Evaluation of microbial phytase in broiler diets. Poultry Science, vol. 83, no. 6, p. 962-970. https://doi.org/10.1093/ps/83.6.962 PMid:15206623

EFSA, 2010. EFSA Panel on Additives and Poducts or Substances used in Animal Feed (FEEDAP)[online] s.a. [cit. 2017-02-15] Available at: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1915/abstract.

Huang, H., Zhang, R., Fu, D., Luo, J., Li, Z., Luo, H., Shi, P., Yang, P., Diao, Q., Yao, B. 2011. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environmental Microbiology, vol. 13, no. 3, p. 747-757. https://doi.org/10.1111/j.1462-2920.2010.02379.x PMid:21105982

Huyghebaert, G., Lippens, M., Lescoat, P., Nys, Y. 2005. The interaction between the macrominerals calcium and phosphorus, vitamin D and phytase in broilers. In Proceed. 15th European symposium on poultry nutrition. Balatonfüred, Hungary, p. 146-160.

Jiang, X. R., Luo, F. H., Qu, M. R., Bontempo, V., Wu., S. G., Zhang, H. J., Yue, H. Y., Qi, G. H. 2013. Effects of non-phytate phosphorus levels and phytase sources on growth performance, serum biochemical and tibia parameters of broiler chickens. Italian Journal of Animal Science, vol. 12, no. e60, p. 375-380. https://doi.org/10.4081/ijas.2013.e60

Karimi, A., Bedford, M. R., Sadeghi, G., Ghobadi, Z. 2011. Influence of dietary non-phytate phosphorus levels and phytase supplementation on the performance and bone characteristics of broilers. Brazilian Journal of Poultry Science, vol. 13, no. 1, p. 43-51.

Kliment, M., Angelovičová, M., Nagy, S. 2010. Use of phytase in broiler chicken diets: a review. Potravinarstvo, vol. 4, suppl. no., p. 166-171. Available at: http://www.potravinarstvo.com/dokumenty/mc_februar_2010/pdf/2/Kliment.pdf

Kornegay, E. T., Radcliffe, Kornegay, E. T., Radcliffe, J. S., Denbow, D. M. 1996. Influence of Natuphos phytase on calcium bioavailability in plant ingredients and development of calcium equivalency values for swine and poultry. In Coelho, M. B., Kornegay, E. T. Phytase in animal nutrition and waste management. Mount Olive : BASF Corporation, NJ. p. 419-434.

Kostrewa, D., Gruninger-Leitch, F., D'Arcy, A., Broger, C., Mitchell, D., Van Loon, A. P. G. M. 1997. Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nature Structural and Molecular Biology, vol. 4, no. 3, p. 185-190. https://doi.org/10.1038/nsb0397-185

Lei, X. G., Porres, J. M. 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, vol. 25, no. 21, p. 1787-1794. https://doi.org/10.1023/A:1026224101580 PMid:14677699

Lim, D., Golovan, S., Forsberg, C. W., Jia, Z. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural and Molecular Biology, vol. 7, no. 2, p. 108-113. https://doi.org/10.1038/72371 PMid:10655611

Lukić, M., Sinovec, Z., Pavlovski, Z., Škrbić, Z., Cmiljanić, R. 2005. The reduction of mineral phosphor us source in diets for broiler and addition of phytase in condition of temperature stress. In Proceedings 15th European symp. on poultry nutrition. Balatonfüred, Hungary, p. 201-204.

Lukić, M., Pavlovski, Z., Škrbić, Z. 2009. Mineral nutrition of modern poultry genotypes. Biotechnology in animal husbandry, vol. 25, no. 5-6, p. 399-409.

Maguire, R. O., Sims, J. T., Saylor, W. W., Turner, B. L., Angel, R., Applegate, T. J. 2004. Influence of phytase addition to poultry diets on phosphorus forms and solubility in litters and amended soils. Journal of Environmental Quality, vol. 33, no. 6, p. 2306-2316. https://doi.org/10.2134/jeq2004.2306 PMid:15537954

Mullaney, E. J., Ullah, A. H. 2003. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, vol. 312, no. 1, p. 179-184. https://doi.org/10.1016/j.bbrc.2003.09.176 PMid:14630039

Nelson, T. S., Sheih, T. R., Wodzinski, R. J., Ware, J. H. 1968a. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poultry Science, vol. 47, no. 6, p. 1842-1848. https://doi.org/10.3382/ps.0471842 PMid:4304685

Nelson, T. J., McGillivray, J. J., Shieh, T. R., Wodzinski, R. J., Ware, J. H. 1968b. Effect of phytate on the calcium requirement of chicks. Poultry Science, vol. 47, no. 6, p. 1985-1989. https://doi.org/10.3382/ps.0471985 PMid:4304686

Oakley, A. J. 2010. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochemical and Biophysical Research Communications, vol. 397, no. 4, p. 745-749. https://doi.org/10.1016/j.bbrc.2010.06.024 PMid:20541524

Onyango, E. M., Bedford, M. R., Adeola, O. 2004. The yeast production system in which Escherichia coli phytase is expressed may affect growth performance, bone ash, and nutrient use in broiler chicks. Poultry Science, vol. 83, no. 3, p. 421-427. https://doi.org/10.1093/ps/83.3.421 PMid:15049495

Onyango, E. M., Bedford, M. R., Adeola, O. 2005. Efficacy of an evolved Escherichia coli phytase in diets of broiler chicks. Poultry Science, vol. 84, no. 2, p. 248-255. https://doi.org/10.1093/ps/84.2.248 PMid:15742961

Payne, R. L., Lavergne, T. K., Southern, L. L. 2005. A comparison of two sources of phytase in liquid and dry forms in broilers. Poultry Science, vol. 84, no. 2, p. 265-272. https://doi.org/10.1093/ps/84.2.265 PMid:15742963

Plumstead, P. W., Leytem, A. B., Maguire, R. O., Spears, J. W., Kwanyuen, P., Brake, J. 2008. Interaction of calcium and phytate in broiler diets. 1. Effects on apparent prececal digestibility and retention of phosphorus. Poultry Science, vol. 87, no, 3, p. 449-458. PMid:18281570

Ptak, A., Bedford, M. R., Świątkiewicz, S., Żyła, K., Józefiak, D. 2015. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS One, vol. 10, no. 3, p. e0119770. https://doi.org/10.1371/journal.pone.0119770 PMid:25781608

Puhl, A. A., Gruninger, R. J., Greiner, R., Janzen, T. W., Mosimann, S. C., Brend Selinger, L. 2007. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Science, vol. 16, no. 7, p. 1368-1378. https://doi.org/10.1110/ps.062738307 PMid:17567745

Qian, H., Veit, H. P., Kornegay, E. T., Ravindran, V., Denbow, D. M. 1996. Effects of supplemental phytase and phosphorus on histological and other tibial bone characteristics and performances of broilers fed semi-purified diets. Poultry Science, vol. 75, no. 5, p. 618-626. https://doi.org/10.3382/ps.0750618 PMid:8722910

Rada, V., Havlík, J. 2010. Enzymes in nutrition of farm animals (Enzýmy vo výživy hospodárskych zvierat.) 1st Ed.; Praha - Uhřineves : Research Institute of Animal Production. 38 p. ISBN 978-80-7403-065-9.

Ragon, M., Hoh, F., Aumelas, A., Chiche, L., Moulin, G., Boze, H. 2009. Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol. 65, no. Pt4, p. 321-326.

Rousseau, X., Létourneau-Montminy, M. P., Même, N., Magnin, M., Nys, Y., Narcy, A. 2012. Phosphorus utilization in finishing broiler chickens: effects of dietary calcium and microbial phytase. Poultry Science, vol. 91, no. 11, p. 2829-2837. https://doi.org/10.3382/ps.2012-02350 PMid:23091139

Schöner, F. J., Hoppe, P. P., Schwarz, G. 1991. Comparative effects of microbial phytase and inorganic P on performance and on retention of P, Ca and crude ash in broilers. Journal of Animal Physiology and Animal Nutrition, vol. 66, p. 248-255. https://doi.org/10.1111/j.1439-0396.1991.tb00294.x

Schöner, F. J., Hoppe, P. P., Schwarz, G., Wiesche, H. 1993. Effects of microbial phytase and inorganic phosphate in broiler chickens: performance and mineral retention at various calcium levels. Journal of Animal Physiology and Animal Nutrition, vol. 69, p. 235-244.

Sebastian, S., Touchburn, S. P., Chavez, E. R., Laguė, P. C. 1996a. Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. Poultry Science, vol. 75, no. 12, pp. 1516-1523. https://doi.org/10.3382/ps.0751516 PMid:9000277

Sebastian, S., Touchburn, S. P., Chavez, E. R., Lague, P. C. 1996b. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poultry Science, vol. 75, no. 6, p. 729-736. https://doi.org/10.3382/ps.0750729 PMid:8737837

Singh, A., Walk, C. L., Ghosh, T. K., Bedford, M. R., Haldar, S. 2013. Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets. British Poultry Science, vol. 54, no. 2, p. 206-215. https://doi.org/10.1080/00071668.2013.775403 PMid:23647184

Sohail, S. S., Roland, D. A. 1999. Influence of supplemental phytase on performance of broilers four to six weeks of age. Poultry Science, vol. 78, p. 550-556. https://doi.org/10.1093/ps/78.4.550 PMid:10230908

Viveros, A., Brenes, A., Arija, I., Centeno, C. 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poultry Science, vol. 81, no. 8, p. 1172-1183. https://doi.org/10.1093/ps/81.8.1172 PMid:12211310

Watson, B. C., Mathews, J. O., Southern, L. L., Shelton, J. L. 2006. The effects of phytase on growth performance and intestinal transit time of broilers fed nutritionally adequate diets and diets deficient in calcium and phosphorus. Poultry Science, vol. 85, no. 3, p. 493-497. https://doi.org/10.1093/ps/85.3.493 PMid:16553281

Xiang, T., Liu, Q., Deacon, A. M., Koshy, M., Kriksunov, I. A., Lei, X. G., Hao, Q. Thiel, D. J. 2004. Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. Journal of Molecular Biology, vol. 339, no. 2, p. 437-445. https://doi.org/10.1016/j.jmb.2004.03.057 PMid:15136045

Yan, F., Kersey, J. H., Waldroup, P. W. 2001. Phosphorus requirements of broiler chicks three to six weeks of age as influenced by phytase supplementation. Poultry Science, vol. 80, no. 4, p. 455-459. https://doi.org/10.1093/ps/80.4.455 PMid:11297284




How to Cite

Angelovičová, M. ., Mellen, M. ., Zajác, P. ., Čapla, J. ., & Angelovič, M. . (2018). Tibia mineralization of chickens determined to meat production using a microbial phytase. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 40–49. https://doi.org/10.5219/805

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >> 

Similar Articles

You may also start an advanced similarity search for this article.