Inhibitory effect of aqueous extracts of raw and roasted Sesamum indicum L. seeds on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and Alzheimer's disease (acetylcholinesterase and butyrylcholinesterase)


  • Justina Talabi Department of Nutrition and Dietetics, Afe Babalola University, Ado-Ekiti, Mail Bag 5454
  • Sekinat Adeyemi Department of Nutrition and Dietetics, Afe Babalola University, Ado-Ekiti, Mail Bag 5454
  • Sefunmi Awopetu Department of Nutrition and Dietetics, Afe Babalola University, Ado-Ekiti, Mail Bag 5454
  • Basiru Olaitan Ajiboye Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Mail Bag 5454, Nigeria
  • Oluwafemi Adeleke Ojo Phytomedicine, Biochemical Toxicology and Diabetes Research Group, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria



Sesamum indicum seeds, α-amylase, α-glucosidase, anticholinesterases, antioxidant activity, Alzheimer’s disease


Sesame (Sesamum indicum L.) seeds are nutritional food, but researches have limited knowledge about the antioxidant, antidiabetic and anticholinesterase activities of the seed. This study was conducted to determine the antioxidant activity, enzyme inhibitory potential (α-amylase and α-glucosidase) and acetylcholinesterase inhibitory property of aqueous extracts of raw and roasted sesame seeds. Antioxidant activities were analyzed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging property, 2,2-azino-bis-(3-ethylbenthiazoline-6- sulphonic acid (ABTS) scavenging ability, iron chelating ability and ferric reducing antioxidant power (FRAP). Anti-Alzheimer's potential was determined using acetylcholinesterase and butyrylcholinesterase enzyme inhibition assay. The results showed that the total phenolic and flavonoid contents were higher in the roasted S. indicum sample with the values of 19.81mg/100g and 17.19 mg/100g respectively. The raw S. indicum sample showed higher antioxidant activity in DPPH, and iron chelation assays; while roasted S. indicum sample showed higher in the reducing power and ABTS scavenging activity. However, anticholinesterase activity was higher in the roasted S. indicum sample than in the raw S. indicum sample. The extracts inhibited α-amylase activity in a concentration-dependent manner (20 - 100 µg.mL-1). The raw sample (16.55 ±0.89%) had higher inhibitory α-amylase activity compared to the roasted sample (15.78 ±0.48%) at 100 µg.mL-1. Inhibition of α-glucosidase was higher in the roasted sample at 100 µg.mL-1 (19.40 ±0.26%) compared to the raw sample at the same concentration (3.65 ±0.52%). These findings suggest that S. indicum L. is not only nutritious but also showed potential pharmacological properties.


Download data is not yet available.


Ademiluyi, A., Oboh, G. 2013. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α -glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimanetal and Toxicologic Pathology, vol. 65, p. 305-309. PMid:22005499

Ademosun, A. O., Oboh, G. 2015. Inhibition of carbohydrate hydrolyzing enzyme associated with type 2 diabetes and anti-oxidative properties of some edible seeds in vitro. International Journal of Diabetes in Developing Countries, vol. 35, no. 3, p. 516-521.

Ali Hassan, S. H., Fry, J. R., Mohd-Fadzelly, M., Abu-Bakar, M. F. 2013. Antioxidant Phytochemical and Anti-Cholinesterase activity of native Kembayau (Canarium odontophyllum) fruit of sabah, Malaysian Borneo. Journal of Nutrition and Food Sciences, vol. 4, no. 1, p. 1-7.

Arnao, M. B. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science and Technology, vol. 11, no. 11, p. 419-421.

Bello, A., Aliero, A. A., Saidu, Y., Muhammad, S. 2011. Phytochemical screening, polypenolic content and Alpha-gluosidase inhibitory potential of Lepatadenia mastata (Pers.). Nigerian Journal of Basic and Applied Sciences, vol. 19, no. 2, p. 181-186.

Blessing, M., Garuba, O., Auqustina, U., Oyedemi, S. 2010. Chemical composition of Seasamum indicum L. (sesame) grown in southeastern Nigeria and the physicochemical properties of the seed oil. Seed Science and Biotechnology, vol. 4, no. 1, p. 69-72.

Chu, Y., Sun, J., Wu, X., Liu, R. H. 2002. Antioxidant and antiproliferative activity of common vegetables. Journal of Agricultural and Food Chemistry, vol. 50, no. 23, p. 6910-16. PMid:12405796

Cunha, F. A. B., Waczuk, E. P., Duarte, A. E., Barrosa, L. M., Elekofehinti, O. O., Matias, E. F. F., da Costa, J. G. M., Sanmi, A. A., Boligon, A. A., da Rocha, J. B. T., Souza, D. O., Posserb, T., Coutinho, H. D. M., Franco, F. L., Kamdem, J. P. 2016. Cytotoxic and antioxidative potentials of ethanolic extract of Eugenia uniflora L. (Myrtaceae) leaves on human blood cells. Biomedicine & Pharmacotherapy, vol. 84, p. 614-621. PMid:27694006

Ellman, G. L., Courtney, K. D., Andres, V., Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, vol. 7, no. 2, p. 88-95.

Enujigha, V. N., Talabi, J. Y., Malomo, S. A., Olagunju, A. I. 2012. DPPH Radical scavenging capacity of phenolic extracts from Arican Yam bean (Sphepostylis stenocarpa). Food and nutrition sciences, vol. 3, no. 1, p. 7-13.

Enujigha, V. N. 2010. The antioxidant and free radicals scavenging capacity of phenolics from African locust bean seeds. Advances in food sciences, vol. 32, no. 2, p. 88-93.

Kwon, Y. I., Apostolidis, E., Kim, Y. C., Shetty, K. 2007. Health benefits of traditional corn, beans and pumpkin: In vitro studies for hyperglycemia and hypertension management. Journal of Medicinal Foods, vol. 10, no. 2, p. 266-275. PMid:17651062

Marin, A., Ferreres, F., Tomas-Barberan, F. A., Gil, M. I. 2004. Characterization and Quantitation of Antioxidant Constituents of Sweet Pepper (Capsicum annuum L.). Journal of Agricurtural and Food Chemistry, vol. 52, no. 12, p. 3861-3869. PMid:15186108

McDonald, S., Prenzier, P. D., Autokiwich, M., Robards, K. 2001. Phenolics content and antioxidant activity of olive oil extracts. Food Chemistry, vol. 73, p. 73-84.

Meda, A., Lamien, C. E., Romito, M., Millogo, J., Nacoulma, O. G. 2005. Determination of the total phenolic, flavonoid and praline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, vol. 91, no. 3, p. 571-577.

Nagendra-Prasad, M. N., Sanjay, K. R., Prasad, D. S., Vijay, N., Nanjunda, S. S. 2012. Review on nutritional and nutraceutical properties of sesame. Journal of Nutrition and Food Science, vol. 2, no. 127, p. 996-1000.

Oboh, G., Akinyemi, J. A., Olasunkanmi, S. O., Idowu, S. O. 2014. Anticholinesterase and Antioxidative Properties of Aqueous Extract of Cola acuminata Seed in Vitro. International Journal of Alzheimer's Disease, vol. 2014, p. 1-8. PMid:25506036

Oboh, G., Puntel, R. L., Rocha, J. B. 2007. Hot pepper (Capsicum annuum, Tepin and Capsicum Chinese, Hernero) Prevent Fe2+-induced lipid peroxidation in brain: in vitro. Food Chemistry, vol. 102, p. 178-185.

Ojo, O. A., Oloyede, O. I., Olarewaju, O .I., Ojo, A. B., Ajiboye, B. O., Onikanni, S. A. 2013a. Toxicity Studies of the Crude Aqueous Leaves Extracts of Ocimum gratissimum in Albino Rats. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), vol. 6, no. 4, p. 34-39.

Ojo, O. A., Oloyede, O. I., Olarewaju, O. I., Ojo, A. B. 2013b. In Vitro Antioxidant Activity and Estimation of Total Phenolic Content in Ethyl Acetate Extract of Ocimum gratissimum. PharmacologyOnline, vol. 3, p. 37-44.

Ojo, O. A., Oloyede, O. I., Tugbobo, O. S., Olarewaju, O. I., Ojo, A. B. 2014. Antioxidant and inhibitory effect of scent leaf (Ocimum gratissimum) on Fe2+ and sodium nitroprusside induced lipid peroxidation in rat brain in vitro. Advances in Biological Research, vol. 8, no. 1, p. 8-17.

Ojo, O. A., Ojo, A. B., Ajiboye, B. O., Olayide, I., Fadaka, A. O. 2016a. Helianthus annuus Leaf Ameliorates Postprandial Hyperglycaemia by inhibiting carbohydrate hydrolyzing enzymes associated with Type-2 diabetes. Iranian Journal of Toxicology, vol. 7, no. 5, p. 17-22.

Ojo, O. A., Ajiboye, B. O., Olayide, I., Fadaka, A. O., Olasehinde, O. R. 2016b. Ethyl acetate fraction of bark of Bridelia ferruginea Benth. inhibits carbohydrate hydrolyzing enzymes associated with type 2 diabetes (α-glucosidase and α-amylase). Advances in Bioresearch, vol. 7, no. 3, p. 126-133.

Ojo, O. A., Ajiboye, B. O., Fadaka, A. O., Taro, P., Shariati, M. A. 2017a. Nrf2-Keap1 Activation, A Promising Strategy in the Prevention of Cancer. Free Radicals and Antioxidants, vol. 7, no. 1, p. 1-7.

Ojo, O. A., Ajiboye, B. O., Ojo, A. B., Olayide, I. I., Akinyemi, A. J., Fadaka, A. O., Adedeji, E. A., Boligon, A. A., Anraku de Campos, MM. 2017b. HPLC-DAD fingerprinting analysis, antioxidant activity of phenolic extracts from Blighia sapida bark and its inhibition of cholinergic enzymes linked to Alzheimer's disease. Jordan journal of Biological Sciences, vol. 10, no. 4, p. 257-264.

Ojo, O. A., Ojo, A. B., Ajiboye, B. O., Oyinloye, B. E., Akinyemi, A. J., Okesola, M. A., Boligon, A. A., de Campos, M. M. 2018. Chromatographic fingerprint analysis, antioxidant properties, and inhibition of cholinergic enzymes (acetylcholinesterase and butyrylcholinesterase) of phenolic extracts from Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill bark. Journal of Basic and Clinical Physiology and Pharmacology, vol. 29, no. 2, p. 217-224.

Orhan, B., Şener, M., Choudhary, I., Khalid, A. 2004. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. Journal of Ethnopharmacology, vol. 91, no. 1, p. 57-60. PMid:15036468

Pulido, R., Bravo, L., Saura-Calixto, F. 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric. Food Chem., vol. 48, no. 8, p. 396-402.

Puntel, R. L., Nogueira, C. W., Rocha, J. B. T. 2005. Krebs cycle intermediates modulate Thiobarbituric Acid Reactive Species (TBARS) production in rat brain in vitro. Neurochemistry Research, vol. 30, no. 2, p. 225-235. PMid:15895826

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, vol. 26, no. 9, p. 1231-1237.

Shai, L. J., Masoko, P., Mokgotho, M. P., Magano, S. R., Mogale, A. M., Boaduo, N., Eloff, J. N. 2010. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany, vol. 76, no. 3, p. 465-470.

Sharififar, F., Moshafi, M. H., Shafazand, E., Koohpayeh, A. 2012. Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chemistry, vol. 130, p. 20-23.

Sharma, S., Gupta, P., Kumar, A., Ray, J., Aggarwal, B. K., Goyal, P., Sharma, A. 2014. In vitro evaluation of roots, seeds and leaves of Sesamum indicum L. for their potential antibacterial and antioxidant properties. African Journal of Biotechnology, vol. 13, no. 36, p. 3692-3701.

Shodeinde, A., Oboh, G. 2012. In vitro antioxidant activities and inhibitory effect of aqueous extracts of unripe plantain pulp (Musa paradisiaca) on enzymes linked with type 2 diabetes mellitus and hypertension. Journal of Toxicology and Environmental Health Sciences, vol. 4, no. 4, p. 65-75.




How to Cite

Talabi, J. ., Adeyemi, S. ., Awopetu, S. ., Ajiboye, B. O., & Ojo, O. A. (2018). Inhibitory effect of aqueous extracts of raw and roasted Sesamum indicum L. seeds on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and Alzheimer’s disease (acetylcholinesterase and butyrylcholinesterase). Potravinarstvo Slovak Journal of Food Sciences, 12(1), 337–346.