Rheological behaviour of chocolate at different temperatures


  • Vojtěch Kumbár Mendel University in Brno, Faculty of AgriSciences, Department of Technology and Automobile Transport (section Physics), Zemědělská 1, 613 00 Brno
  • Šárka Nedomová Mendel University in Brno, Faculty of AgriSciences, Department of Food Technology, Zemědělská 1, 613 00 Brno
  • Sylvie Ondruší­ková Mendel University in Brno, Faculty of AgriSciences, Department of Food Technology, Zemědělská 1, 613 00 Brno
  • Adam Polcar Mendel University in Brno, Faculty of AgriSciences, Department of Technology and Automobile Transport, Zemědělská 1, 613 00 Brno




plastic fluid, yield stress, flow model, chocolate, temperature


The rheological behaviour of the chocolate at different temperatures was studied using a concentric cylinder viscometer with precision small samples adapter, temperature sensor and standard spindle. BIO chocolate (100% organic cocoa) has been used for the whole types of experiments. At the first, the range of temperature has been chosen 36 °C, 38 °C, 40 °C, 42 °C, and 44 °C. The shear deformation rate was established from the 0.1 s-1 up to 68 s-1. Rheological behaviour was non-Newtonian (plastic) with inconsiderable yield stress in all temperatures. The chocolate unambiguously demonstrated plastic behaviour and flow curves were fitted by the power law model (Herschel-Bulkley model), Bingham model, and Casson model with taking into account the coefficient of determination R2. The obtained results of rheological behaviour of chocolate can be best described as Casson fluid. Exactly coefficients of models can be used for modelling of flow velocity, volume flow, friction factor, Reynolds number, two dimensional and three dimensional velocity profiles and much more for flow in the real technical elements e.g. pipes, trough, tubes. Finally, temperature dependence of apparent viscosity of chocolate was also continuously measured in the range from 35 °C up to 62 °C. The apparent viscosity decreased in the temperature range. This decrease was fitted using power law equation. The knowledge of the plastic flow behaviour of chocolate is very important, because it is not quite common flow behaviour of foodstuffs.


Download data is not yet available.


Ačkar, D., Škrabal, S., Šubarić, D., Babić, J., Miličević, B., Jozinović, A. 2015. Rheological properties of milk chocolates as influenced by milk powder type, emulsifier, and cocoa butter equivalent additions. International Journal of Food Properties, vol. 18, no. 7, p. 1568-1574.

Adriefdjohan, M. W., Savaiano, D. A. 2005. Chocolate and cardiovascular health: is it too good to be true? Nutrition Reviews. vol. 63, no. 12, p. 427-430. https://doi.org/10.1111/j.1753-4887.2005.tb00118.x

Aguilera, J. M., Michel, M., Mayor, G. 2004. Fat migration in chocolate: Diffusion or capillary flow in a particulate solid? - A hypothesis paper. Journal of Food Science, vol. 69, no. 7, p. 167-174. https://doi.org/10.1111/j.1365-2621.2004.tb13615.x

Alvarez, E., Cancela, M. A., MacEiras, R. 2006. Comparison of rheological behaviour of salad sauces. International Journal of Food Properties, vol. 9, no. 4, 907-915. https://doi.org/10.1080/10942910600840870

Barbosa, C., Diogo, F., Alves, M. R. 2016. Fitting mathematical models to describe the rheological behaviour of chocolate pastes. AIP Conference Proceedings 1738. vol. 370016. https://doi.org/10.1063/1.4952161

Barnes, H. A., Walters, K. 1989. The yield stress myth? Rheologica Acta, vol. 24, p. 323-326. https://doi.org/10.1007/BF01333960

Bauer, S. R., Ding, E. L, Smit, L. A. 2011. Cocoa Consumption, Cocoa Flavonoids, and Effects on Cardiovascular Risk Factors: An Evidence-Based Review. Current Cardiovascular Risk Reports, vol. 5, no. 2, p 120-127. https://doi.org/10.1007/s12170-011-0157-5

Božiková, M., Hlaváč, P. 2013. Temperature and storing time influence on selected physical properties of milk and acidophilus milk. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, vol. 61, no. 6, p. 1589-1595. https://doi.org/10.11118/actaun201361061589

Bozkurt, H., Icier, F. 2009. Rheological characteristics of quince nectar during ohmic heating. International Journal of Food Properties, vol. 12, no. 4, p. 844-859. https://doi.org/10.1080/10942910802102962

Cikrikci, S., Yucekutlu, M., Mert, B., Oztop, M. H. 2017. Physical characterization of low-calorie chocolate formulations. Journal of Food Measurement and Characterization, vol. 11, no. 1, 41-49. https://doi.org/10.1007/s11694-016-9369-1

De Graef, V., Depypere, F., Minnaert, M., Dewettinck, K. 2011. Chocolate yield stress as measured by oscillatory rheology. Food Research International, vol. 44, no. 9, p. 2660-2665. https://doi.org/10.1016/j.foodres.2011.05.009

Ding, E. L., Hutfless, S. M., Ding, X., Girotra, S. 2006. Chocolate and Prevention of Cardiovascular Disease: A Systematic Review. Nutrion Metabolism (Lond). vol. 3, no. 2-3.

Fernandes, V. A., Müller, A. J., Sandoval, A. J. 2013. Thermal, structural and rheological characteristics of dark chocolate with different compositions. Journal of Food Engineering, vol. 116, p. 97-108. https://doi.org/10.1016/j.jfoodeng.2012.12.002

Glicerina, V., Balestra, F., Rosa, M. D., Romani, S. 2016. Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, vol. 169, p. 165-171. https://doi.org/10.1016/j.jfoodeng.2015.08.011

Glicerina, V., Balestra, F., Rosa, M. D., Romani, S. 2013. Rheological, textural and calorimetric modifications of dark chocolate during process. Journal of Food Engineering, vol. 119, p. 173-179. https://doi.org/10.1016/j.jfoodeng.2013.05.012

Gonçalves, E. V., da Silva Lannes, S. C. 2010. Chocolate rheology. Food Science and Technology, vol. 30, no. 4, p. 845-851. https://doi.org/10.1590/S0101-20612010000400002

Hlavač, P., Božikova, M., Cviklovič, V. 2016. Dynamic viscosity and activation energy of wort during fermentation and storing. Acta Technologica Agriculturae, vol. 19, no. 1, p. 6-9. https://doi.org/10.1515/ata-2016-0002

Konar, N., Poyrazoglu, E. S., Artik, N. 2015. Influence of calcium fortification on physical and rheological properties of sucrose-free prebiotic milk chocolates containing inulin and maltitol. Journal of Food Science and Technology, vol. 52, no. 4, p. 2033-2042. https://doi.org/10.1007/s13197-013-1229-y

Kozelová, D., Matejková, E., Fikselová, M., Dékányová, J. 2014. Analysis of consumer behavior at chocolate purchase. Potravinarstvo, vol. 8, no. 1, p. 62-66. https://doi.org/10.5219/325

Kumbár, V., Dostál, P. 2014. Temperature dependence density and kinematic viscosity of petrol, bioethanol and their blends. Pakistan Journal of Agricultural Sciences, vol. 51, no. 1, p. 175-179.

Kumbár, V., Nedomová, Š. 2015. Viscosity and analytical differences between raw milk and UHT milk of Czech cows. Scientia Agriculturae Bohemica, vol. 46, no. 2, p. 78-83. https://doi.org/10.1515/sab-2015-0020

Kumbár, V., Nedomová, Š., Pytel, R., Kilián, L., Buchar, J. 2017. Study of rheology and friction factor of natural food hydrocolloid gels. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 203-209. https://doi.org/10.5219/735

Kumbár, V., Trnka, J., Nedomová, Š., Buchar, J. 2015. On the influence of storage duration on rheological properties of liquid egg products and response of eggs to impact loading - Japanese quail eggs. Journal of Food Engineering, vol. 166, p. 86-94. https://doi.org/10.1016/j.jfoodeng.2015.05.030

Lapčík, L., Lapčíková, B., Žižková, H., Peng, L., Vojteková, V. 2017. Effect of cocoa fat content on wetting and surface energy of chocolate. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 410-416. https://doi.org/10.5219/732

Machálková, L., Hřivna, L., Nedomová, Š., Jůzl, M., The effect of storage temperature on the quality and formation of blooming defects in chocolate confectionery. Potravinarstvo, vol. 9, no. 1, p. 39-47. https://doi.org/10.5219/425

Quiñones-Muñoz, T., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., Ochoa-Martinez, L. A., Morales-Castro, J., González-Laredo, R. F., Medina-Torres, L. 2011. Mixing and tempering effect on the rheological and particle size properties of dark chocolate coatings. CYTA - Journal of Food, vol. 9, no. 2, p. 109-113. https://doi.org/10.1080/19476337.2010.482748

Rao M. A. 2014. Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series. 3rd ed. BOSTON, USA: Springer Science+Business Media. 461 p. ISBN 978-1-4614-9229-0.

Servais, C. Ranc, H., Roberts, I. D. 2004. Determination of chocolate viscosity. Journal of Texture Studies, vol. 34, no. 5-6, p. 467-498. https://doi.org/10.1111/j.1745-4603.2003.tb01077.x

Trávníček, P., Burg, P., Krakowiak-Bal, A., Junga, P., Vítěz, T., Ziemiańczyk, U. 2016. Study of rheological behaviour of wines. International Agrophysics, vol. 30, no. 4, p. 509-518. https://doi.org/10.1515/intag-2016-0018

Zzaman, W., Issara, U., Febrianto, N. F., Yang, T. A. 2014. Fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. International Food Research Journal, vol. 21, no. 3, p. 983-987.




How to Cite

Kumbár, V. ., Nedomová, Šárka ., Ondruší­ková, S. ., & Polcar, A. . (2018). Rheological behaviour of chocolate at different temperatures. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 123–128. https://doi.org/10.5219/876

Most read articles by the same author(s)

1 2 > >>