Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida)


  • Peter Kováčik Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Agrochemistry and Plant Nutrition, Tr. A Hlinku 2, 949 76 Nitra
  • Peter Šalamún Slovak Academy of Sciences, Institute of Parasitology, Department of Environmental and Plant Parasitology, Hlinkova 3 / Puškinova 6, 040 01 Košice
  • Sylwester Smoleń University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, Unit of Plant Nutrition, al. 29 Listopada 54, 31”“425, Krakow
  • Petr Škarpa Mendel University in Brno, Faculty of Agri science, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědelská 1, 613 00 Brno
  • Vladimí­r Šimanský Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Tr. A Hlinku 2, 949 76 Nitra, Slovakia, E-mail: Department of pedology and geology, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľuboš Moravčí­k Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Garden and Landscape Architecture, Tulipánová 7, 949 76 Nitra



carrot, antioxidant, vitamin C, total polyphenol, yield


The impact of different types of vermicomposts as well as different species and genera of earthworms on the quantity of the cultivated crops yield has been studied for decades. There is scarce information about the effects of these factors on the quality of plant production. One of the qualitative parameters of vegetables, to which a special attention is paid, is the content of antioxidants (vitamin C, total polyphenols and other substances). The pot experiment carried out in the vegetation cage studied: A) the influence of soil itself, soil mixed with vermicompost in a ratio of 4:1; B) the influence of earthworms number (genus Eisenia foetida, 10 and 20 individuals per pot) supplied to soil mixed with vermicompost in a ratio of 4:1 on the weight of radish roots and leaves, to the total chlorophylls content in leaves, to the selected qualitative parameters of the roots and leaves (vitamin C, total polyphenols content,  total antioxidant activity). The results showed that the supplementation of vermicompost into soil increased the content of the total chlorophylls in leaves. The carrot roots and leaves yield has also been risen. In the roots the content of vitamin C and content of total polyphenols (TPC) was decreased and the total antioxidant activity (TAA) dropped, too. The increased content of vitamin C and TPC was detected in leaves. The inoculation of soil containing vermicompost by earthworms increased the root yield and TAA in roots. It increased the content of vitamin C and TPC in leaves. From the viewpoint of antioxidant content (vitamin C and total polyphenols) the leaves are more attractive than a root.



Download data is not yet available.


Amador, J. A., Görres, J. H., Savin, M. C. 2006. Effects of Lumbricus terrestris L. on nitrogen dynamics beyond the burrow. Applied Soil Ekology, vol. 33, p. 61-66.

Amossé, J., Bettarel, Y., Bouvier, C., Duc, T. T., Thu, T. D., Jouquet, P. 2013. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biology & Biochemistry, vol. 66, p. 197-203.

Arancon, N. Q., Edwards, C. A., Atyieh, R., Metzger, J. D. 2004. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, vol. 93, p. 139-144.

Arnold, R. E., Hodson, M. E. 2007. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestri. Environmental Pollution, vol.148, no. 1, p. 21-30. 2006.11.003

Bhat, S. A., Singh, S., Sing, J., Kumar, S. Bhawana, Vig, A. P. 2018. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, vol. 252, p. 172-179.

Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft and Technologie, vol. 28, no. 1, p. 25-30.

Bremner, J. M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, vol. 55, no. 1, p. 11-33.

Brown, G. G., Edwards, C. A., Brussaard, L. 2004. How Earthworms Affect Plant Growth: Burrowing into the Mechanisms. In Edwards, C.A. et al. Earthworm ecology. 2nd Edition. Ch. 2, CRC Press : London, UK p. 13-45, ISBN: 9780849318191

Dziadowiec, H., Gonet, S. S. 1999. A guide to the methods for determination of soil organic matter. Prace Komisie Naukowej. PTG : Warszawa, Poland, 65. p.

Doan, T. T., Ngo, P. T., Rumpel, C., Nguyen, B. V. 2013. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae, vol. 160, p. 148-154.

Elmer, W. H. 2016. Effect of leaf mold mulch, biochar, and earthworms on mycorrhozal colonization and yield of asparagus affected by Fusarium crown and root rot. Plant disease. vol. 100, p. 2507-2512.

Garg, P., Gupta, A., Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida : A comparative study. Bioresource Technology. vol. 97, p. 391-395.

Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., Kim, K-H. 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, vol. 200, p. 243-252.

Friberg, H., Lagerlöf, J., Rämert, B. 2005. Influence of soil fauna on fungal plantpathogens in agricultural and horticultural systems. Biocontrol Science and Technology, vol. 15, no. 7, p. 641-658.

Groenigen, J. W., Lubbers, I. M., Vos, H. M. J., Brown, G. G., De Deyn, G. B., Groenigen, K. J. 2014. Earthworms increase plant production: a meta-analysis. Scientific Reports, vol. 4, no. 6365, p. 1-7.

Gutiérrez-Miceli F. A., García-Gómez R. C., Rin­cón R. R., Abud-Archila M., Llaven O. M. A., Cruz M. J. G., Dendooven L. 2008. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor L. Moench) using vermicompost leachate. Bioresource Technology, vol. 99, p. 6174-6180.

Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafatae, C. C., Abud-Archila, M., Llaven, M. A. O., Rosales, R. R., Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, vol. 98, no. 15, p. 2781-2786.

Gunadi, B., Edwards, C. A. 2003. The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia, vol. 47, no. 4, 321-329.

Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. 2015. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo, vol. 9, no. 1, p. 1-8.

Jouquet, P., Plumere, T., Thu, T. D., Rumpel, C., Duc, T. T., Orange, D. 2010. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earth worms. Applied Soil Ecology, vol. 46, p. 125-133.

Manh, V. H., Wang, C. H. 2014. Vermicompost as an important component in substrate: Effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia, vol. 8, p. 32-40.

Khan, K., Pankaj, U., Verma, S. K., Gupta, A. K., Singh, R. P., Verma, R. K. 2015. Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Industrial Crops and Products, vol. 70, p. 404-409.

Kováčik. P. 2007. Brief history of agrochemistry and fertilization in Slovakia (Stručná história agrochémie a úroveň hnojenia na Slovensku). Prešov : Vydavateľstvo Michala Vaška, Slovakia, 76 p. ISBN: 978-80-7165-608-1 (In Slovak)

Kováčik, P., Renčo, M., Šimanský, V., Hanáčková, E., Wiśniowska-Kielian, B. 2015 Impact of vermicompost extract application into soil and on plant leaves on maize phytomass formation. Journal of Ecological Engineering, vol. 16, no. 4, p. 143-153.

Kováčik, P., Šimanský, V., Wierzbowska, J., Renčo M. 2016. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. Journal of Elementology, vol. 21, no. 4, p. 1235-1251.

Kováčik, P., Šalamún, P., Wierzbowska, J. 2018. Vermikompost and Eisenia foetida as factors influencing the formation of radish phytomass. Agriculture (Poľnohospodárstvo), vol. 64, no. 2, p. 49-56.

Lalander, C. H. Komakech, A. J., Vinnerĺs, B. 2015. Vermicomposting as manure management strategy for Urban small-holder animal farms - Kampala case study. Waste Management, vol. 39, p. 96-103.

Lachman, J., Proněk, D., Hejtmanková, A., Dudjak, J., Pivec, V., Faitová, K. 2003. Total polyphenol and main flavonoid antioxidant in different onion (Allium cepa L.) varieties. Horticultural Science, vol. 30, no. 4, p. 142-147.

Lenková, M., Bystrická, J., Chlebo, P., Kovarovič, J. 2018. Garlic (Allium Sativum L.) - The content of bioactive compounds. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 405-412.

Lichtenthaler, H. K. 1987. Chllorophylls and carotenoides: Pigments of photosynthetic biomembranes. Methods Enzymology, vol. 148, p. 350-382.

Musilová, J., Bystrická, J., Árvay, J., Harangózo, Ľ. 2017. Polyphenols and phenolic acids in sweet potato (Ipomoea Batatas L.) roots. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 82-87.

Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, vol. 15, no. 12, p. 1409-1416.

Milcu, A., Schumacher, J., Scheu, S. 2006. Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogenity. Functional Ekology, vol. 20, p. 261-268.

Najjari, F., Ghasemi, S. 2018. Changes in chemical properties of sawdust and blood powder mixture during vermicomposting and the effects on the growth and chemical composition of cucumber. Scientia Horticulturae, vol. 232, p. 250-255.

Nurhidayati, N., Ali, U., Murwani I. 2016. Yield and quality of cabbage (Brassica oleracea L. var. capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agriculture and Agricultural Science Procedia, vol. 11, p. 5-13.

Nuutinen, V., Pöyhönen, S., Ketoja, E., Pitkänen, J. 2001. Abundance of the earthworm Lumbricus terrestris in relation to subsurface drainage pattern on a sandy clay field. European Journal of Soil Biology. vol. 37, no. 4, p. 301-304.

Oszmianski, J., Kolniak-Ostek, J., Wojdyło, A. 2013. Characterization and content of flavonol derivarives of Allium ursinum L. plant. Journal of Agricultural and Food Chemistry, vol. 61, no. 1, p. 176-184. PMid:23249145

Padmavathiamma, P. K., Loretta, Y. Li., Kumari, U. R. 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology. vol. 99, p. 1672-1681.

Rämert, B., Bugg, R. L., Clark, M. S., Werner, M. R., McGuinn, R. P., Poudel, D. D., Berry, A. M. 2002. Influence of Lumbricus terrestris inoculation on gree nmanure disappearance and the decomposer community in a walnut orchard. Soil Biology and Biochemistry, vol. 33, p. 1509-1516.

Razaq, M., Zhang, P., Shen, H. L., Salahuddin. 2017 Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, vol. 12, no. 2, e0171321.

Ražná, K., Khasanova, N., Ivanišová, E., Qahramon, D., Habán, M. 2018. Antioxidant properties of cumin (Bunium Persicum boiss.) extract and its protective role against ultrasound-induced oxidative stress tested by microrna based markers. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, 2018, no. 1, p. 11-19.

Santos, C., Fonseca, J., Aires, A., Coutinho, J., Trinidade, H. 2017. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Management, vol. 59, p. 37-47.

Scheuerell S. J. 2004. Compost tea production practices, microbial properties, and plant disease suppression. In Soil and compost eco-biology, León-Spain, SoilAce : Spain, p. 41-51.

Spurgeon, D. J., Keith, A. M., Schmidt, O., Lammertsma, D. R., Faber, J. H. 2013. Landuse and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecoogy. vol. 13, 46.

Xiang, H., Zhang, J., Guo, L., Zhao, B. 2016. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.). PeerJ, 4:e2752;




How to Cite

Kováčik, P. ., Šalamún, P. ., Smoleń, S. ., Škarpa, P. ., Šimanský, V. ., & Moravčí­k, Ľuboš . (2018). Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida). Potravinarstvo Slovak Journal of Food Sciences, 12(1), 520–526.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.