Determination of HMW - GS in wheat using SDS - PAGE and Lab-on-chip methods

Authors

  • Timea Kuťka Hlozáková Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421904687373 https://orcid.org/0000-0001-9307-9130
  • Edita Gregová National Agricultural and Food centre, Research Institute of Plant Production, Piešťany https://orcid.org/0000-0002-7709-5082
  • Svetlana Šliková National Agricultural and Food centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany, Slovakia, Tel.: +421337722311
  • Zdenka Gálová Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra https://orcid.org/0000-0002-0349-4363
  • Milan Chňapek Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, Tel.: +421905734983
  • Janka Drábeková Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra https://orcid.org/0000-0002-5611-415X

DOI:

https://doi.org/10.5219/995

Keywords:

wheat, HMW-GS, SDS-PAGE, LoC

Abstract

SDS-PAGE is widely used to determine the amounts of the different gluten protein types. However, this method is time-consuming, especially at early stages of wheat breeding, when large number of samples needs to be analyzed. On the other hand, LoC (Lab-on-Chip) technique has the potential for a fast, reliable, and automatable analysis of proteins. Benefits and limitations of Lab-on-Chip method over SDS-PAGE method in gluten proteins evaluation were explored in order to determine in which way LoC method should be improved in order to make its results more compliant with the results of SDS-PAGE. Chip electrophoresis provides a very good reproducibility of HMW-GS patterns. Moreover this approach is much faster than the conventional SDS-PAGE methods requiring several hours for an analysis. Another advantage over traditional gel electrophoresis is lower sample and reagent volume requirements, as well as specialized protein standards for accurate reproducibility and quantification. In the present study, we identified novel complex allele located at the locus Glu-1B.

Downloads

Download data is not yet available.

References

Balázs, G., Baracskai, I., Nádosi, M., Harasztos, A., Békés, F., Tömösközi, S. 2011. Lab-on-a-chip technology in cereal science: Analytical properties and possible application areas. Acta Alimentaria, vol. 41, no. 1, p. 73-85. https://doi.org/10.1556/AAlim.2011.0003

Bean, S. R., Lookhart, G. L. 1999. Sodium dodecyl sulfate capillary electrophoresis of wheat proteins. 1. Uncoated capillaries. Journal of agricultural and food chemistry, vol. 47, no. 10, p. 4246-4255. https://doi.org/10.1021/jf990413n

Cauvain, S. P., Young, L. S. 2003. Water control in baking. In Cauvain, S. P. Bread making: Improving quality. Woodhead Publishing, 608 p. ISBN 9781855735538. https://doi.org/10.1201/9780203495001.ch21

Eley, M. H., Burns, P. C., Kannapell, C. C., Campbell, P. S. 1979. Cetyltrimethylammonium bromide polyacrylamide gel electrophoresis: Estimation of protein subunit molecular weights using cationic detergents. Analytical biochemistry, vol. 92, no. 2, p. 411-419. https://doi.org/10.1016/0003-2697(79)90679-1

FAO. 2017. World Food Situation: FAO Cereal Supply and Demand Brief. Available at: http://www.fao.org/worldfoodsituation/csdb/en/

Gregová, E., Šliková, S., Šudyová, V., Šramková, Z., Hauptvogel, P. 2011. Characterization of gliadin and HMW glutenin protein composition in coloured wheat (Triticum aestivum L.) varieties. Potravinarstvo, vol. 5, no. 4, p. 25-27. https://doi.org/10.5219/161

Hernández, Z. J. E., Figueroa, J. D. C., Rayas-Duarte, P., Martínez-Flores, H. E., Arámbula, G. V., Luna, G. B., Peña, R. J. 2012. Influence of high and low molecular weight glutenins on stress relaxation of wheat kernels and the relation to sedimentation and rheological properties. Journal of Cereal Science, vol. 55, no. 3, p. 344-350. https://doi.org/10.1016/j.jcs.2012.01.009

Hou, G., Ng, P. K. W. 1995. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Cereal Chemistry, vol. 72, no. 6, p. 545-55.

Hsieh, J. F., Chen, S. T. 2007. Comparative studies on the analysis of glycoproteins and lipopolysaccharides by the gel-based microchip and SDS-PAGE. Biomicrofluidics, vol. 1, no. 1, p. 014102. https://doi.org/10.1063/1.2399892

Chanvrier, H., Uthayakumaran, S., Lillford, P. 2007. Rheological properties of wheat flour processed at low levels of hydration: Influence of starch and gluten. Journal of Cereal Science, vol. 45, no. 3, p. 263-274. https://doi.org/10.1016/j.jcs.2006.09.006

Chňapek, M., Peroutková, R., Vivodík, M., Gálová, Z. 2015. Identification of technologically important genes and their products in the collection of bread wheat genotypes. The Journal of Microbiology, Biotechnology and Food Sciences, vol. 4, no. 2, p. 26-29. https://doi.org/10.15414/jmbfs.2015.4.special2.26-29

Kuschel, M. 2000. Protein sizing and analysis using the Agilent 2100 Bioanalyzer and Protein 200 LabChip® kit: Agilent Technologies, p. 1-8. ISBN 5990-5283EN.

Kuschel, M., Neumann, T., Barthmaier, P., Kratzmeier, M. 2002. Use of lab-on-a-chip technology for protein sizing and quantitation. Journal of biomolecular techniques: JBT, vol. 13, no. 3, p. 172.

Kuťka Hlozáková, T., Gregová, E., Gálová, Z. 2015. Genetic diversity of GLU-1in European wheat genetic resources and varieties. The Journal of Microbiology, Biotechnology and Food Sciences, vol. 4, no. 23, p. 23-25. https://doi.org/10.15414/jmbfs.2015.4.special2.23-25

Li, Y., Zhou, R., Branlard, G., Jia, J. 2010. Development of introgression lines with 18 alleles of glutenin subunits and evaluation of the effects of various alleles on quality related traits in wheat (Triticum aestivum L.). Journal of Cereal Science, vol. 51, no. 1, p. 127-133. https://doi.org/10.1016/j.jcs.2009.10.008

Maforimbo, E., Skurray, G., Uthayakumaran, S., Wrigley, C. 2008. Incorporation of soy proteins into the wheat–gluten matrix during dough mixing. Journal of cereal science, vol. 47, no. 2, p. 380-385. https://doi.org/10.1016/j.jcs.2007.01.003

Marchetti-Deschmann, M., Lehner, A., Peterseil, V., Sövegjarto, F., Hochegger, R., Allmaier, G. 2011. Fast wheat variety classification by capillary gel electrophoresis-on-a-chip after single-step one-grain high molecular weight glutenin extraction. Analytical and bioanalytical chemistry, vol. 400, no. 8, p. 2403-2414. https://doi.org/10.1007/s00216-011-4717-9

Nagaoka, H. 2003. Chiral resolution function with immobilized food proteins. Biotechnology progress, vol. 19, no. 4, p. 1149-1155. https://doi.org/10.1021/bp034059w

Payne, P. I., Holt, L. M., Jackson, E. A., Law, C. N., Damania, A. B. 1984. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 304, no. 1120, p. 359-371. https://doi.org/10.1098/rstb.1984.0031

Payne, P. I., Holt, L. M., Law, C. N. 1981. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theoretical and Applied Genetics, vol. 60, no. 4, p. 229-236. https://doi.org/10.1007/BF02342544

Payne, P. I., Lawrence, G. J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, Glu-D1, which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun, vol. 11, p. 29-35.

Payne, P. I., Seekings, J. A., Worland, A. J., Jarvis, M. G., Holt, L. M. 1987. Allellic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat: analysis of F5 progeny from „Chinese Spring“ x „Chinese Spring“ (Hope 1A). Journal of Cereal Science, vol. 6, no. 2, p. 103-118. https://doi.org/10.1016/S0733-5210(87)80047-4

Sutton, K. H., Bietz, J. A. 1997. Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. Journal of Cereal Science, vol. 25, no. 1, p. 9-16. https://doi.org/10.1006/jcrs.1996.9999

Torbica, A. M., Živančev, D. R., Nikolić, Z. T., Đorđević, V. B., Nikolovski, B. G. 2010. Advantages of the Lab-on-a-Chip method in the determination of the Kunitz trypsin inhibitor in soybean varieties. Journal of Agricultural and Food Chemistry, vol. 58, no. 13, p. 7980-7985. https://doi.org/10.1021/jf100830m

Uthayakumaran, S., Batey, I. L., Wrigley, C. W. 2005. On-the-spot identification of grain variety and wheat-quality type by Lab-on-a-chip capillary electrophoresis. Journal of Cereal Science, vol. 41, no. 3, p. 371-374. https://doi.org/10.1016/j.jcs.2006.01.001

Uthayakumaran, S., Listiohadi, Y., Baratta, M., Batey, I. L., Wrigley, C. W. 2006. Rapid identification and quantitation of high-molecular-weight glutenin subunits. Journal of Cereal Science, vol. 44, no. 1, p. 34-39. ttps://doi.org/10.1016/j.jcs.2004.12.001

Weegels, P. L., Hamer, R. J., Schofield, J. D. 1995. RP–HPLC and capillary electrophoresis of subunits from glutenin isolated by SDS and Osborne fractionation. Journal of Cereal Science, vol. 22, no. 3, p. 211-224. https://doi.org/10.1006/jcrs.1995.0058

Wrigley, C. W. 1992. Identification of cereal varieties by gel electrophoresis of the grain proteins. Seed Analysis, p. 17-41. https://doi.org/10.1007/978-3-662-01639-8_2

Published

2019-06-28

How to Cite

Kuťka Hlozáková, T. ., Gregová, E. ., Šliková, S., Gálová, Z. ., Chňapek, M. ., & Drábeková, J. . (2019). Determination of HMW - GS in wheat using SDS - PAGE and Lab-on-chip methods. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 477–481. https://doi.org/10.5219/995

Most read articles by the same author(s)

1 2 > >>